В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Nactyxa2003
Nactyxa2003
14.02.2020 15:54 •  Алгебра

Найти критические точки, найти значения в точках функции y=(1/2x^2-1/3x^3)' на промежутках [1; 3]

Показать ответ
Ответ:
Kolodey200453
Kolodey200453
01.10.2020 01:15

Для начала найдем саму функцию в стандартном виде. у=х - х^2. Теперь берем производную уже от этой функции: у'=1-2х. Критическая точка одна: х=0,5. Это точка максимума. Но она не входит в промежуток. Следовательно, на промежутке у максимальное будет при 1 у=0. у минимальное при х=3. у=-6.

 

Примечание. Если все же изначальная функция была y=1/2x^2-1/3x^3. То тогда к нулю приравниваем ее производную, т.е. у'=х - х^2. В этом случае кристические точки: х=0 и х=1. 0-точка минимума функции, 1- точка максимума. но 0 не входит в промежуток, значит у максимальное в точке х=1. у= 1/6. у минимальное в точке х=3, у= -4,5

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота