1) Для того, чтобы решением оказался конечный промежуток, необходимо, чтобы выполнялось неравенство a - 2 > 0 (Если a = 2, решений у неравенства нет вовсе, а если a - 2 < 0, то решение - объединение промежутков вида (-infinity, c) и (d, +infinity)). Итак, первая скобка больше нуля, и на неё можно поделить. 2) Получаем неравенство x^2 - 2(a^2 - 2a) - 7 < 0 Заметим, что график функции y = x^2 + 2px + q - парабола - симметричен относительно прямой x = -p (это вертикальная прямая, проходящая через вершину параболы). Тогда множество решений (если оно не пусто) должно быть симметрично относительно x = -p / 2a. Таким образом, необходимо потребовать, чтобы: а) у исходного неравенства были корни б) абсцисса (т.е. х-координата) вершины была равна 3. 3) Проще всего начать со второго условия. a^2 - 2a = 3 a^2 - 2a - 3 = 0 a1 = 3; a2 = -1 Отметим сразу, что второй корень не удовлетворяет условию a - 2 > 0, так что единственный возможный кандидат на ответ это a = 3. 3) Остается проверить, что при подстановке в неравенство a = 3 множество решений окажется непустым. x^2 - 2(9 - 6)x - 7 < 0 x^2 - 6x - 7 < 0 - множество решений непусто, а именно -1 < x < 7 (или, переписав в другом виде, 3 - 4 < x < 3 + 4)
1.а) Область определения находим из системы неравенств
х+44>0; 2х-22>0;
х>-44;х>22/2⇒x∈(11;+∞).
4а) ㏒₃(х-4)+㏒₃(х+7)=㏒₃26; ОДЗ уравнения х больше 4, (х-4)(х+7)=26;
х²+7х-4х-28-26=0; х²+3х-54=0; По теореме, обратной теореме Виета, х₁=-9∉ОДЗ, не является корнем. х₂=6
4в) ㏒²₂х-㏒₂х-30=0; ОДЗ уравнения х∈(0;+∞) Пусть ㏒₂х=у, тогда у²-у-30=0; по теореме, обр. теореме Виета, у₁=-5; у₂=6 тогда ㏒₂х=-5; х=2⁻⁵; х=1/32 -входит в ОДЗ, корень.
㏒₂х=6; х=2⁶=64- входит в ОДЗ, корень.
5а)㏒₁/₅(22х-2)≥0
ОДЗ неравенства 22х-2>0; x>1/11
Заменим 0=㏒₁/₅1, т.к. основание логарифма меньше 1, то 22х-2≤1
22х≤3; х≤3/22; с учетом ОДЗ решением неравенства будет х∈(1/11;3/11)
a - 2 > 0
(Если a = 2, решений у неравенства нет вовсе, а если a - 2 < 0, то решение - объединение промежутков вида (-infinity, c) и (d, +infinity)).
Итак, первая скобка больше нуля, и на неё можно поделить.
2) Получаем неравенство x^2 - 2(a^2 - 2a) - 7 < 0
Заметим, что график функции y = x^2 + 2px + q - парабола - симметричен относительно прямой x = -p (это вертикальная прямая, проходящая через вершину параболы). Тогда множество решений (если оно не пусто) должно быть симметрично относительно x = -p / 2a. Таким образом, необходимо потребовать, чтобы:
а) у исходного неравенства были корни
б) абсцисса (т.е. х-координата) вершины была равна 3.
3) Проще всего начать со второго условия.
a^2 - 2a = 3
a^2 - 2a - 3 = 0
a1 = 3; a2 = -1
Отметим сразу, что второй корень не удовлетворяет условию a - 2 > 0, так что единственный возможный кандидат на ответ это a = 3.
3) Остается проверить, что при подстановке в неравенство a = 3 множество решений окажется непустым.
x^2 - 2(9 - 6)x - 7 < 0
x^2 - 6x - 7 < 0 - множество решений непусто, а именно -1 < x < 7 (или, переписав в другом виде, 3 - 4 < x < 3 + 4)
ответ. a = 3; b = 4.