Пусть а- наименьший катет треугольника, d-разность арифметической прогрессии.Тогда второй катет будет равен а+d, a гипотенуза равна a+2d. Тогда периметр треугольника будет равен: а+а+d+а+2d=120 3a+3d=120 //уростим, разделив все равенство на 3 а+d=40 a=40-d Т.к. треугольник прямоугольный, а катеты и гипотенуза равны а;а+d и a+2d соответственно, то по т.Пифагора: (а+2d)^2=a^2+(a+d)^2 a^2+4ad+4d^2=a^2+a^2+2ad+d^2 -a^2+2ad+3*d^2=0 a^2-2ad-3d^2=0 Подставим в это ур-е равенство: a=40-d (40-d)^2-2d(40-d) - 3d^2=0 1600-80d+d^2-80d+2d^2- 3d^2=0 -160d=-1600 d=10 ответ: разность данной арифметической прогрессии равна 10
Решение: Обозначим скорость грузовика за (х) км/час, тогда двигаясь бы без остановки он потратил время в пути: 80/х час, а с увеличением скорости грузовик потратил время в пути: 80/(х+10)час, а так как он потратил в пути меньшее время, так как останавливался на 24мин или 2/5 часа, то составим уравнение: 80/х - 80/(х+10)=2/5 Приведём уравнение к общему знаменателю: (х)*(х+10)*5 5*(х+10)*80 - 5*х*80=х*(х+10)*2 400х+4000-400х=2х²+20х 2х²+20х-4000=0 Сократим это уравнение на 2 х²+10х-2000=0 - приведённое квадратное уравнение х1,2=-5+-√(25+2000)=-5+-√2025=-5+-45 х1=-5+45=40 (км\час) х2=-5-45=-50-не соответствует условию задачи На участке 80 км грузовик двигался со скоростью: 40 + 10=50 (км/час)
а+а+d+а+2d=120
3a+3d=120 //уростим, разделив все равенство на 3
а+d=40
a=40-d
Т.к. треугольник прямоугольный, а катеты и гипотенуза равны а;а+d и a+2d соответственно, то по т.Пифагора:
(а+2d)^2=a^2+(a+d)^2
a^2+4ad+4d^2=a^2+a^2+2ad+d^2
-a^2+2ad+3*d^2=0
a^2-2ad-3d^2=0
Подставим в это ур-е равенство: a=40-d
(40-d)^2-2d(40-d) - 3d^2=0
1600-80d+d^2-80d+2d^2- 3d^2=0
-160d=-1600
d=10
ответ: разность данной арифметической прогрессии равна 10
Обозначим скорость грузовика за (х) км/час, тогда двигаясь бы без остановки он потратил время в пути:
80/х час,
а с увеличением скорости грузовик потратил время в пути:
80/(х+10)час,
а так как он потратил в пути меньшее время, так как останавливался на 24мин или 2/5 часа, то составим уравнение:
80/х - 80/(х+10)=2/5
Приведём уравнение к общему знаменателю: (х)*(х+10)*5
5*(х+10)*80 - 5*х*80=х*(х+10)*2
400х+4000-400х=2х²+20х
2х²+20х-4000=0 Сократим это уравнение на 2
х²+10х-2000=0 - приведённое квадратное уравнение
х1,2=-5+-√(25+2000)=-5+-√2025=-5+-45
х1=-5+45=40 (км\час)
х2=-5-45=-50-не соответствует условию задачи
На участке 80 км грузовик двигался со скоростью:
40 + 10=50 (км/час)
ответ: 50км/час