У=5/х- 4. 1. Область определения - множество всех чисел, кроме нуля. 2. Нули функции 5/х -4 = 0, х=0,8. 3. Промежутков получается три: (-∞;0) у<0; (0;0,8)у>0; (0,8;+∞) y<0. 4.Функция убывает на каждом промежутке области определения, поэтому экстремумов нет. 5. (-∞;0) убывает, (0;+∞) убывает. 6. График функции представляет гиперболу у=5/х, смещенную на 4 единицы вниз, поэтому функция принимает все значения, кроме -4; область значений (-∞;-4)∪(-4;+∞). 7. Наибольшего и наименьшего значений нет. 8. у(-х)= -5/х-5≠у(х) и у(-х)≠-у(х). Четной или нечетной функция не является.
у=х²+4х+5. 1. Область определения (-∞;+∞). 2. Нулей нет, т.к. дискриминант отрицательный. 3 Промежуток знакопостоянства один (-∞;+∞)у>0. 4. Функция имеет минимум в точке -b/(2a)=-2. 5. (-∞;-2] ---убывает, [-2;+∞) --- возрастает. 6.7. у(-2)= 4-8+5 = 1 - наименьшее значение функции, область значений [1;+∞). 8. функция не четная ни нечетная, т.к. у(-х) = х²-4х+5. Это не равно ни у(х) ни -у(х).
х²·( х - 3) + 2х·(3 - х)² = 0
Квадраты противоположных выражений равны, поэтому (3 - х)² = (х - 3)², получим
х²·( х - 3) + 2х· (х - 3)² = 0
Вынесем за скобки общий множитель х·( х - 3):
х·( х - 3)·(х + 2·(х - 3) ) = 0
х·( х - 3)·(х + 2·х - 6 ) = 0
х·( х - 3)·(3·х - 6 ) = 0
3·х·( х - 3)·(х - 2 ) = 0
х = 0 или х - 3 = 0, или х - 2 = 0
х = 3 х = 2
ответ: 0; 2; 3.
Проверка:
!) Если х = 0, то 0²·( 0 - 3) + 2·0·(3 - 0)² = 0, 0 = 0 - верно
2) Если х = 2, то 2²·( 2 - 3) + 2·2·(3 - 2)² = 0, 0 = 0 - верно
3) Если х = 3, то 3²·( 3 - 3) + 2·3·(3 - 3)² = 0, 0 = 0 - верно
1. Область определения - множество всех чисел, кроме нуля.
2. Нули функции 5/х -4 = 0, х=0,8.
3. Промежутков получается три: (-∞;0) у<0; (0;0,8)у>0; (0,8;+∞) y<0.
4.Функция убывает на каждом промежутке области определения, поэтому экстремумов нет.
5. (-∞;0) убывает, (0;+∞) убывает.
6. График функции представляет гиперболу у=5/х, смещенную на 4 единицы вниз, поэтому функция принимает все значения, кроме -4; область значений (-∞;-4)∪(-4;+∞).
7. Наибольшего и наименьшего значений нет.
8. у(-х)= -5/х-5≠у(х) и у(-х)≠-у(х). Четной или нечетной функция не является.
у=х²+4х+5.
1. Область определения (-∞;+∞).
2. Нулей нет, т.к. дискриминант отрицательный.
3 Промежуток знакопостоянства один (-∞;+∞)у>0.
4. Функция имеет минимум в точке -b/(2a)=-2.
5. (-∞;-2] ---убывает, [-2;+∞) --- возрастает.
6.7. у(-2)= 4-8+5 = 1 - наименьшее значение функции, область значений [1;+∞).
8. функция не четная ни нечетная, т.к. у(-х) = х²-4х+5. Это не равно ни у(х) ни -у(х).