2x²-4х+b=0 Это решается по дискриминанту вот формула D = b² - 4ac где а - это то число где x² где b - это то число где x где c - это то число где нет x Подставляем значения под формулу D = 4² - 4 * 2 * b = 16 - 8b = 8b дальше находим x1 и x2 по формуле х1= -b + квадратный корень из дискриминанта делим на 2а х2= -b - квадратный корень из дискриминанта делим на 2а Так же : если дискриминант отрицательный то корней нет если дискриминант равен нулю то корень только один если дискриминант больше нуля то уравнение имеет два корня
Объяснение:№2. 1) f(x)= 4/(x-1), функция имеет смысл, если х≠1; значит D(f)= (-∞;1)∪(1; +∞). 2)Найдём производную: f'(x)=-4/(x-1)² 3) x=1 критическая точка, т.к. производная в этой точке не имеет смысла; 4 ) f'(x)<0, если х∈ (-∞;1)∪(1; +∞). Значит на (1; +∞) функция у=f(x) убывает, чтд.
№3. f(x)= 3 - √(1-x²) 1) функция имеет смысл, если 1-x²≥0 ⇒ -1≤х≤1, т.е. D(f)= [-1;1]. 2) найдём производную функции f'(x)=-1/2√(1-x²) · (1-x²)' = 2x/2√(1-x²) = x/√(1-x²)
f'(x) = x/√(1-x²) 3)Найдём критические точки, решив уравнение f'(x) =0, ⇒ x/√(1-x²)=0 ⇒ x=0-критическая точка 4)Найдём знаки производной в окрестности критической точки на всей области определения:
на промежутке (-1;0), f'(x)<0; на (0; 1) , f'(x)>0 5) Так как при переходе через критическую точку х=0 производная меняет знак с минуса на плюс, то это точка минимума, f(0)=2 6) Найдём значения функции на концах промежутка D(f): f(±)=3
ответ: min f(x)=f(0)=2, max f(x)=f(±1)=3
№4. Если f(x) возрастающая функция, а g(x)=3-2x -убывающая, то f(g(x))- тоже убывающая.
Это решается по дискриминанту
вот формула D = b² - 4ac
где а - это то число где x²
где b - это то число где x
где c - это то число где нет x
Подставляем значения под формулу
D = 4² - 4 * 2 * b = 16 - 8b = 8b
дальше находим x1 и x2
по формуле
х1= -b + квадратный корень из дискриминанта
делим на 2а
х2= -b - квадратный корень из дискриминанта
делим на 2а
Так же :
если дискриминант отрицательный то корней нет
если дискриминант равен нулю то корень только один
если дискриминант больше нуля то уравнение имеет два корня
Объяснение:№2. 1) f(x)= 4/(x-1), функция имеет смысл, если х≠1; значит D(f)= (-∞;1)∪(1; +∞). 2)Найдём производную: f'(x)=-4/(x-1)² 3) x=1 критическая точка, т.к. производная в этой точке не имеет смысла; 4 ) f'(x)<0, если х∈ (-∞;1)∪(1; +∞). Значит на (1; +∞) функция у=f(x) убывает, чтд.
№3. f(x)= 3 - √(1-x²) 1) функция имеет смысл, если 1-x²≥0 ⇒ -1≤х≤1, т.е. D(f)= [-1;1]. 2) найдём производную функции f'(x)=-1/2√(1-x²) · (1-x²)' = 2x/2√(1-x²) = x/√(1-x²)
f'(x) = x/√(1-x²) 3)Найдём критические точки, решив уравнение f'(x) =0, ⇒ x/√(1-x²)=0 ⇒ x=0-критическая точка 4)Найдём знаки производной в окрестности критической точки на всей области определения:
на промежутке (-1;0), f'(x)<0; на (0; 1) , f'(x)>0 5) Так как при переходе через критическую точку х=0 производная меняет знак с минуса на плюс, то это точка минимума, f(0)=2 6) Найдём значения функции на концах промежутка D(f): f(±)=3
ответ: min f(x)=f(0)=2, max f(x)=f(±1)=3
№4. Если f(x) возрастающая функция, а g(x)=3-2x -убывающая, то f(g(x))- тоже убывающая.