В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Schoolboy0770
Schoolboy0770
26.06.2021 17:09 •  Алгебра

Найти наименьшее и наибольшее значение функции y=1/3x^3-x,0 меньше или равно x меньше или равно 4

Показать ответ
Ответ:
Катя4567890123
Катя4567890123
24.05.2020 16:20

У=⅓x³-x

1) найдем критические точки: 

Найдем производную: 

У¹= x²-1

Прировняем производную к нулю: 

X²-1= o

X²= 1

X=±1, x=-1 не подходит т.к 0≤x≤4

2)  найдем значения на концах отрезка и в критической точке:

F(0)=0

F(1)= -⅔

F(4)= 52/3

ответ: наибольшее значение: f(4)= 52/3, на меньшее значение : f(1)= -⅔

0,0(0 оценок)
Ответ:
Вероникапривет
Вероникапривет
24.05.2020 16:20

Задача сводится к взятию производной от функции для поиска максимума и минимума, а также проверке значений на концах отрезка.

y' = x² - 1

критические точки

x² - 1 = 0 ⇔ x = -1, x = 1 ⇒ x=-1 не входит в нашу область по условию 0 ≤ x ≤ 4

 

___-1___+___0-1+4+_

 

y' > 0 на интервале x∈(-∞, -1)U(1, +∞)

y' < 0 при x∈(-1, 1)

производная меняет свой знак с + на - при x = -1 - это точка максимума (но по условию мы ее не рассматриваем)

c - на + при x = 1 - это точка минимума.

Найдем значение функции в этих точках:

y(1) = -2/3

Также проверим на концах отрезка [0, 4]

y(0) = 0

y(4) = 52/3

Максимум достигается при x = 4 - y = 52/3

Минимум при x = 1 - y = -2/3

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота