В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
kiska625
kiska625
16.11.2021 03:56 •  Алгебра

Найти наименьшее значение а, при котором имеет решения уравнение. 0,5(sinx+sqrt3cosx)=8-7a-2a^2

Показать ответ
Ответ:
zandaryanartem1
zandaryanartem1
23.05.2020 16:54

Согласно формуле сложения гармонических колебаний

sin x + √3 * cos x = 2 * sin (x + π/3)

Тогда уравнение принимает вид

sin (x+π/3) = 8 - 7 * a - 2 * a² = 14,125 - (6,125 + 7 * a + 2 * a²) =

14,125 - 2 * (a² +3,5 * a + 3,0625) = 14,125 - 2 * (a + 1,75)²

Поскольку значение синуса лежит в пределах от -1 до 1, то

-1 ≤ 14,125 - 2 * (a + 1,75)² ≤ 1 ,  откуда

6,5625 ≤ (a + 1,75)² ≤ 7,5625

Итак,  √6,5625 ≤ а + 1,75 ≤ 2,75   или  -2,75 ≤ а + 1,75 ≤ -√6,5625 .  Тогда

           √6,5625 - 1,75 ≤ а ≤ 1   или  -4,5 ≤ а ≤ -√6,5625 - 1,75

Следовательно, минимальное значение параметра, при котором уравнение имеет решение  а = -4,5

 

 

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота