В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
duplo214
duplo214
12.03.2020 14:43 •  Алгебра

Найти наименьшее значение функции y=(x^2 - 8x + 8)e^2-x, на отрезке [1; 7]

Показать ответ
Ответ:
66546654
66546654
01.10.2020 21:31
Y=(x^2-8х+8)*e^(2-x)-(x^2-8x+8)*e^(2-x)
(2x-8)*e^(2-x)-(x^2-8x+8)*e^(2-x)
e^(2-x)*(2x-8-x^2+8x-8)=0
-x^2+10x-16=0
x=2   и х=8(не удов. условию)

теперь подставь в уравнение 2, и получишь ответ
y(2)=(4-16+8)*e^0=-4
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота