в случае неравномерного движения, когда v≠const
v(t)=ds/dt
ds=v(t)dt
t₂
s=∫ v(t)dt
t₁
нужно найти путь, пройденный точкой за седьмую секунду. это период времени с 6 секунды по 7 секунду. для нашего случая можно записать:
₇ ₇
s=∫(3t²+6t-1)dt =t³+3t²-t | =(7³+3*7²-³+3*6²-6)= 483-318 =165 (м)
⁶ ⁶
ответ: 165 м
подробнее - на -
в случае неравномерного движения, когда v≠const
v(t)=ds/dt
ds=v(t)dt
t₂
s=∫ v(t)dt
t₁
нужно найти путь, пройденный точкой за седьмую секунду. это период времени с 6 секунды по 7 секунду. для нашего случая можно записать:
₇ ₇
s=∫(3t²+6t-1)dt =t³+3t²-t | =(7³+3*7²-³+3*6²-6)= 483-318 =165 (м)
⁶ ⁶
ответ: 165 м
подробнее - на -
находится из выражения: х₁,₂ = (-в+-√(в²-4ас)) / 2а.
В задании дано: а=3 в = 5 с = 2m x₁ = -1.
Подставляем эти данные в уравнение:
-1 = (-5+-√(5²-4*3*2m)) / 2*3
-6 = -5+-√(25-25m)
-1 = +-√(25-25m) Возведем обе части в квадрат:
1 =25 - 24m 24m = 24 m = 1
Отсюда х = (-5+-√(5²-4*3*2*1)) / 2*3 = (-5 +- 1) / 6
х₁ =(-5+1) / 6 = -4 /6 = -2 / 3 (это второй корень)
х₂ = (-5-1) / 6 = -6 / 6 = -1 (этот корень дан в задании)