Чтобы избавиться от дробного выражения, знаменатель первой дроби в первом уравнении умножим на числитель второй дроби, а знаменатель второй дроби в первом уравнении умножим на числитель первой дроби. Во втором уравнении знаменатель дроби умножим на 5:
(3х-4)(5-3у)=(3у-4)(5-3х)
(у+5)=5(х-3)
Раскроем скобки:
15х-9ху-20+12у=15у-9ху-20+12х
у+5=5х-15
Приведём подобные члены:
15х-9ху-20+12у-15у+9ху+20-12х=0
у+5-5х+15=0
3х-3у=0
у-5х+20=0
Выразим х через у в первом уравнении, подставим выражение во второе уравнение и вычислим у:
p=m/n
n=90 ( количество двузначных чисел)
Числа делящиеся на 3:
12; 15;... 99 - таких чисел 30
Можно найти их количество по формуле n-го члена арифметической прогрессии
a₁=12
d=15-12=3
99=12+3·(n-1) ⇒87=3(n-1) n-1=29 n=30
Числа делящиеся на 5:
10; 15;20; 25; 30;...; 95 - таких чисел 30
Можно найти их количество по формуле n-го члена арифметической прогрессии
a₁=10
d=15-10=5
95=10+5·(n-1) ⇒85=5(n-1) n-1=19 n=20
Чисел, которые одновременно делятся и на 3 и на 5 всего 6:
15;30;45;60;75 и 90
m=30+20-6=44
p=44/90=22/45
Решение системы уравнений х=5
у=5
Объяснение:
Решить систему уравнений
(5-3х)/(3х-4)=(5-3у)/(3у-4)
(у+5)/(х-3)=5
Чтобы избавиться от дробного выражения, знаменатель первой дроби в первом уравнении умножим на числитель второй дроби, а знаменатель второй дроби в первом уравнении умножим на числитель первой дроби. Во втором уравнении знаменатель дроби умножим на 5:
(3х-4)(5-3у)=(3у-4)(5-3х)
(у+5)=5(х-3)
Раскроем скобки:
15х-9ху-20+12у=15у-9ху-20+12х
у+5=5х-15
Приведём подобные члены:
15х-9ху-20+12у-15у+9ху+20-12х=0
у+5-5х+15=0
3х-3у=0
у-5х+20=0
Выразим х через у в первом уравнении, подставим выражение во второе уравнение и вычислим у:
3х=3у
х=у
у-5у= -20
-4у= -20
у= -20/-4
у=5
х=у
х=5
Решение системы уравнений х=5
у=5