Линейная функция — это функция, которую можно задать формулой
y=kx+m , где x — независимая переменная, k и m — некоторые числа.
Применяя эту формулу, зная конкретное значение x , можно вычислить соответствующее значение y .
Пусть y=0,5x−2 .
Тогда:
если x=0 , то y=−2 ;
если x=2 , то y=−1 ;
если x=4 , то y=0 и т. д.
Обычно эти результаты оформляют в виде таблицы:
x 0 2 4
y −2 −1 0
x — независимая переменная (или аргумент),
y — зависимая переменная.
Графиком линейной функции y=kx+m является прямая.
Чтобы построить график данной функции, нам нужны координаты двух точек, принадлежащих графику функции.
Построим на координатной плоскости xOy точки (0;−2) и (4;0) и
проведём через них прямую.
lineara1.png
Многие реальные ситуации описываются математическими моделями, представляющими собой линейные функции.
Пример:
на складе было 500 т угля. Ежедневно стали подвозить по 30 т угля. Сколько угля будет на складе через 2 ; 4 ; 10 дней?
Если пройдёт x дней, то количество y угля на складе (в тоннах) выразится формулой y=500+30x .
Таким образом, линейная функция y=30x+500 есть математическая модель ситуации.
При x=2 имеем y=560 ;
при x=4 имеем y=620 ;
при x=10 имеем y=800 и т. д.
Однако надо учитывать, что в этой ситуации x∈N .
Если линейную функцию y=kx+m надо рассматривать не при всех значениях x , а лишь для значений x из некоторого числового множества X , то пишут y=kx+m,x∈X .
Пример:
построить график линейной функции:
a) y=−2x+1,x∈[−3;2] ; b) y=−2x+1,x∈(−3;2) .
Составим таблицу значений функции:
x −3 2
y 7 −3
Построим на координатной плоскости xOy точки (−3;7) и (2;−3) и
проведём через них прямую.
Далее выделим отрезок, соединяющий построенные точки.
Этот отрезок и есть график линейной функции y=−2x+1,x∈[−3;2] .
Точки (−3 ; 7) и (2 ; −3) на рисунке отмечены тёмными кружочками.
lineara2.png
b) Во втором случае функция та же, только значения x=−3 и x=2 не рассматриваются, так как они не принадлежат интервалу (−3;2) .
Поэтому точки (−3 ; 7) и (2 ; −3) на рисунке отмечены светлыми кружочками.
lineara3.png
Рассматривая график линейной функции на отрезке, можно назвать наибольшее и наименьшее значения линейной функции.
В случае
a) y=−2x+1,x∈[−3;2] имеем, что yнаиб =7 и yнаим =−3 ;
b) y=−2x+1,x∈(−3;2) имеем, что ни наибольшего, ни наименьшего значений линейной функции нет, так как оба конца отрезка, в которых как раз и достигались наибольшее и наименьшее значения, исключены из рассмотрения.
В ходе построения графиков линейных функций можно как бы «подниматься в горку» или «спускаться с горки», т. е. линейная функция или возрастает, или убывает.
Попробую решить) Итак, при х = -4,5 неравенство x^2+9x+a>0 - не верно. Значит, при х = -4,5 верно следующее неравенство: x^2+9x+a<0 ( поменяли знак неравенства на противоположный). Подставим "-4,5" вместо икса и получим: (-4,5)^2+9*(-4,5)+a<0 20,25-40,5+a<0 -20,25+a<0 a<20,25 - при этих "a" неравенство x^2+9x+a<0 - ВЕРНО,а неравенство x^2+9x+a>0 - НЕ ВЕРНО. И верным оно будет при a>20,25 ( поменяли знак неравенства на противоположный). Проверим: подставим в формулу неравенства любое значение "a", которое больше 20,25( например,21). Далее,чтобы решить неравенство, нам надо найти корни уравнения x^2+9x+21=0, но т.к. дискриминант <0, то решением неравенства x^2+9x+21>0 будут все иксы. ответ: a> 20,25.
вот прочитай теорию
Линейная функция — это функция, которую можно задать формулой
y=kx+m , где x — независимая переменная, k и m — некоторые числа.
Применяя эту формулу, зная конкретное значение x , можно вычислить соответствующее значение y .
Пусть y=0,5x−2 .
Тогда:
если x=0 , то y=−2 ;
если x=2 , то y=−1 ;
если x=4 , то y=0 и т. д.
Обычно эти результаты оформляют в виде таблицы:
x 0 2 4
y −2 −1 0
x — независимая переменная (или аргумент),
y — зависимая переменная.
Графиком линейной функции y=kx+m является прямая.
Чтобы построить график данной функции, нам нужны координаты двух точек, принадлежащих графику функции.
Построим на координатной плоскости xOy точки (0;−2) и (4;0) и
проведём через них прямую.
lineara1.png
Многие реальные ситуации описываются математическими моделями, представляющими собой линейные функции.
Пример:
на складе было 500 т угля. Ежедневно стали подвозить по 30 т угля. Сколько угля будет на складе через 2 ; 4 ; 10 дней?
Если пройдёт x дней, то количество y угля на складе (в тоннах) выразится формулой y=500+30x .
Таким образом, линейная функция y=30x+500 есть математическая модель ситуации.
При x=2 имеем y=560 ;
при x=4 имеем y=620 ;
при x=10 имеем y=800 и т. д.
Однако надо учитывать, что в этой ситуации x∈N .
Если линейную функцию y=kx+m надо рассматривать не при всех значениях x , а лишь для значений x из некоторого числового множества X , то пишут y=kx+m,x∈X .
Пример:
построить график линейной функции:
a) y=−2x+1,x∈[−3;2] ; b) y=−2x+1,x∈(−3;2) .
Составим таблицу значений функции:
x −3 2
y 7 −3
Построим на координатной плоскости xOy точки (−3;7) и (2;−3) и
проведём через них прямую.
Далее выделим отрезок, соединяющий построенные точки.
Этот отрезок и есть график линейной функции y=−2x+1,x∈[−3;2] .
Точки (−3 ; 7) и (2 ; −3) на рисунке отмечены тёмными кружочками.
lineara2.png
b) Во втором случае функция та же, только значения x=−3 и x=2 не рассматриваются, так как они не принадлежат интервалу (−3;2) .
Поэтому точки (−3 ; 7) и (2 ; −3) на рисунке отмечены светлыми кружочками.
lineara3.png
Рассматривая график линейной функции на отрезке, можно назвать наибольшее и наименьшее значения линейной функции.
В случае
a) y=−2x+1,x∈[−3;2] имеем, что yнаиб =7 и yнаим =−3 ;
b) y=−2x+1,x∈(−3;2) имеем, что ни наибольшего, ни наименьшего значений линейной функции нет, так как оба конца отрезка, в которых как раз и достигались наибольшее и наименьшее значения, исключены из рассмотрения.
В ходе построения графиков линейных функций можно как бы «подниматься в горку» или «спускаться с горки», т. е. линейная функция или возрастает, или убывает.
Если k>0 , то линейная функция y=kx+m возрастает;
если k<0 , то линейная функция y=kx+m убывает.
Объяснение:
Итак, при х = -4,5 неравенство x^2+9x+a>0 - не верно.
Значит, при х = -4,5 верно следующее неравенство:
x^2+9x+a<0 ( поменяли знак неравенства на противоположный).
Подставим "-4,5" вместо икса и получим:
(-4,5)^2+9*(-4,5)+a<0
20,25-40,5+a<0
-20,25+a<0
a<20,25 - при этих "a" неравенство x^2+9x+a<0 - ВЕРНО,а неравенство x^2+9x+a>0 - НЕ ВЕРНО. И верным оно будет при a>20,25 ( поменяли знак неравенства на противоположный).
Проверим: подставим в формулу неравенства любое значение "a", которое больше 20,25( например,21). Далее,чтобы решить неравенство, нам надо найти корни уравнения x^2+9x+21=0, но т.к. дискриминант <0, то решением неравенства x^2+9x+21>0 будут все иксы.
ответ: a> 20,25.