В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Yleoliner
Yleoliner
15.07.2021 21:22 •  Алгебра

Найти неопределенный интеграл (e^x)*sin(x)dx

Показать ответ
Ответ:
students17
students17
06.10.2020 23:48
Пусть I(x)=∫eˣ*sin(x)*dx. Применим метод "по частям". Пусть u=eˣ, dv=sin(x)*dx, тогда I(x)=u*v-∫v*du. Но du=eˣ*dx, v=∫sin(x)*dx=-cos(x). I(x)=-eˣ*cos(x)+∫eˣ*cos(x)*dx. Пусть теперь I1(x)=∫eˣ*cos(x)*dx. Снова применяем метод "по частям", полагая u=eˣ, dv=cos(x)*dx. Тогда du=eˣ*dx, v=∫cos(x)*dx=sin(x) и I1(x)=eˣ*sin(x)-∫eˣ*sin(x)*dx=eˣ*sin(x)-I(x). Мы получили уравнение: I(x)=-eˣ*cos(x)+eˣ*sin(x)-I(x), или 2*I(x)=eˣ*sin(x)-eˣ*cos(x)=eˣ*[sin(x)-cos(x)]. Отсюда I(x)=eˣ*[sin(x)-cos(x)]/2. ответ: eˣ*[sin(x)-cos(x)]/2. 
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота