D(y)=[-2;+∞)- область определения данной функции. Cоставим уравнение касательной к кривой в точке z y(z)=√(z+2); y`(x)=1/2√(x+2) y`(z)=1/2√(z+2) Уравнение у-у(z)=y`(z)(x-z) y-√(z+2)=(x-z)/2√(z+2) Найдем точки пересечения касательной с осями координат При х=0 у=√(z+2)-(z/2√(z+2))=(2z+4-z)/2√(z+2)=(z+4)/2√(z+2) При у=0 x-z=-2(z+2) ⇒x=-z-4 Треугольник, образуемый касательной с осями координат- прямоугольный, с катетами |-z-4| и |(z+4)/2√(z+2)| Площадь прямоугольного треугольника находим по формуле как половину произведения катетов: S(Δ)=(1/2)|-z-4|·(z+4)/2√(z+2)=(z+4)²/4√(z+2) S`(z)=2(z+4)(3z+4)/16(z+2)√(z+2) S`(z)=0 3z+4=0 z=-4/3 y(-4/3)=√((-4/3)+2)=1/√3 О т в е т.(-4/3; 1/√3)
Находим первую производную функции:
y' = (x-4)² * (2*x-2)+(x-1)² * (2*x-8)
или
y' = 2(x-4)(x-1)(2*x-5)
Приравниваем ее к нулю:
2(x-4)(x-1)(2*x-5) = 0
x₁ = 1
x₂ = 5/2
x₃ = 4
Вычисляем значения функции
f(1) = 0
f(5/2) = 81/16
f(4) = 0
ответ: fmin = 0; fmax = 81/16
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = 2(x-4)²+2(x-1)²+2(2*x-8)(2*x-2)
или
y'' = 12*x ²- 60*x + 66
Вычисляем:
y''(1) = 18>0 - значит точка x = 1 точка минимума функции.
y''(4) = 18>0 - значит точка x = 4 точка минимума функции.
Cоставим уравнение касательной к кривой в точке z
y(z)=√(z+2);
y`(x)=1/2√(x+2)
y`(z)=1/2√(z+2)
Уравнение
у-у(z)=y`(z)(x-z)
y-√(z+2)=(x-z)/2√(z+2)
Найдем точки пересечения касательной с осями координат
При х=0 у=√(z+2)-(z/2√(z+2))=(2z+4-z)/2√(z+2)=(z+4)/2√(z+2)
При у=0 x-z=-2(z+2) ⇒x=-z-4
Треугольник, образуемый касательной с осями координат- прямоугольный, с катетами |-z-4| и |(z+4)/2√(z+2)|
Площадь прямоугольного треугольника находим по формуле как половину произведения катетов:
S(Δ)=(1/2)|-z-4|·(z+4)/2√(z+2)=(z+4)²/4√(z+2)
S`(z)=2(z+4)(3z+4)/16(z+2)√(z+2)
S`(z)=0
3z+4=0
z=-4/3
y(-4/3)=√((-4/3)+2)=1/√3
О т в е т.(-4/3; 1/√3)