Объяснение:
Подкоренное выражение х²-5х+6 /х-4 ≥0 х²-5х+6 ≥ 0 0 ∠ х-4
(х-3)(х-2)≥0
это точки пересечения с осью Х.
Парабола ветвями вверх,
значит она отрицательна между корнями ,если при этом и знаменатель отрицательный,то дробь положительна. х-4∠0 х∠4
2≤ х ≤3 общий ответ 2≤ х ≤3. Теперь рассмотрим случай когда оба положительны и числитель и знаменатель.
4∠х знаменатель положительный. А числитель неотрицательный,когда х находится правее большего и левее меньшего корня.
х≤2 или 3≤х общий ответ 4∠х
ООФ 2≤ х ≤3 или 4∠х
2)Подкоренное выражение х²-9х/8х ≥0 х(х-9) ≥ 0 0 ∠ 8х
х(х-9)≥0 -это точки пересечения с осью Х.
х∠0 или 9 ∠х числитель положителен. знаменатель положителен при 0∠х общим ответом в этой части 9∠х
тепреь рассмотрим ,когда оба отрицательны.
х(х-9)≤0 0≤х≤9
знаменатель меньше нуля при х∠0 . Это должно выполняться одновременно.0∠х≤9 обратите внимание,что х строго больше 0! Поскольку делить на 0 нельзя!
Теперь можем объединить ответы. от 0 до 9 включительно рабортает нижний ответ,а после этого верхний. Значит можно просто записать ООФ : 0∠х
Объяснение:
Подкоренное выражение х²-5х+6 /х-4 ≥0 х²-5х+6 ≥ 0 0 ∠ х-4
(х-3)(х-2)≥0
это точки пересечения с осью Х.
Парабола ветвями вверх,
значит она отрицательна между корнями ,если при этом и знаменатель отрицательный,то дробь положительна. х-4∠0 х∠4
2≤ х ≤3 общий ответ 2≤ х ≤3. Теперь рассмотрим случай когда оба положительны и числитель и знаменатель.
4∠х знаменатель положительный. А числитель неотрицательный,когда х находится правее большего и левее меньшего корня.
х≤2 или 3≤х общий ответ 4∠х
ООФ 2≤ х ≤3 или 4∠х
2)Подкоренное выражение х²-9х/8х ≥0 х(х-9) ≥ 0 0 ∠ 8х
х(х-9)≥0 -это точки пересечения с осью Х.
х∠0 или 9 ∠х числитель положителен. знаменатель положителен при 0∠х общим ответом в этой части 9∠х
тепреь рассмотрим ,когда оба отрицательны.
х(х-9)≤0 0≤х≤9
знаменатель меньше нуля при х∠0 . Это должно выполняться одновременно.0∠х≤9 обратите внимание,что х строго больше 0! Поскольку делить на 0 нельзя!
Теперь можем объединить ответы. от 0 до 9 включительно рабортает нижний ответ,а после этого верхний. Значит можно просто записать ООФ : 0∠х
метод интервалов
х - 4 = 0 4х +1 = 0 4х +3 = 0 5х -2 = 0
х = 4 х = -1/4 х = -3/4 х = 2/5
-∞ -3/4 -1/4 2/5 4 +∞
- - - - + это знаки(х -4)
- - + + + это знаки (4х +1)
- + + + + это знаки( 4х +3)
- - - + + это знаки (5х -2)
это решение
ответ: (-3/4; -1/4)∪(2/5; 4)