Длину дистанции обозначим S м. Скорость Маши v(M) = S/35 м/мин Скорость Коли v(K) = S/28 м/мин Их скорости относятся друг к другу v(K):v(M) = 35:28 = 5:4 Если бы они начали одновременно, то Коля пробежал бы 5/9 пути, а Маша 4/9 пути, т.е. часть 0,8 от пути Коли. А на самом деле Маша пробежала 0,75 от пути Коли. Коля пробежал x м, а Маша на 1/4 меньше Коли, т.е. 0,75x м. А вместе они пробежали S = x + 0,75x = 1,75x = 7x/4 x = 4/7*S - путь Коли; 0,75x = 3/7*S - путь Маши. 3/7 = 27/63 < 4/9 = 28/63, значит Маша пробежала меньше, чем могла бы, если бы они начали одновременно. Значит, Коля начал раньше. Пусть Коля начал раньше на а мин. Значит, когда Маша начала, он уже пробежал а/35 часть пути. Осталось (35-a)/35 часть. Коля пробежал 5/9 от этой части. Это будет (35-a)/35*5/9 = 5(35-a)/315 - пробежал Коля от старта Маши до встречи. А всё вместе он пробежал 4/7 пути. a/35 + 5(35-a)/315 = 4/7 Умножаем всё на 315 = 35*9 = 45*7 9a + 175 - 5a = 4*45 = 180 4a = 5 a = 5/4 Ближе всего это к 1 мин. Видимо, правильный ответ: Г) Коля на 1 мин раньше.
Разложим трёхзначное число 4ab по разрядам, получим 400+10a+b Переставим в трёхзначном числе цифру 4 на место единиц и разложим получившееся число по разрядам, получим 100a+10b+4 Вычтем из числа 4ab число ab4, получим: (400+10a+b)-(100a+10b+4)=400+10a+b-100a-10b-4=396-90a-9b По условию, данная разность равна 279. Составим уравнение: 396-90a-9b=279 -90a-9b=-117 |:(-9) 10a+b=13 Заметим, что 10a+b - поразрядная запись числа 13, т.е. a=1 и b=3 Следовательно, 4ab - это число 413 ab4 - это число 134 Находим сумму полученных трёхзначных чисел: 413+134=547 ответ: А) 547
Скорость Маши v(M) = S/35 м/мин
Скорость Коли v(K) = S/28 м/мин
Их скорости относятся друг к другу v(K):v(M) = 35:28 = 5:4
Если бы они начали одновременно, то Коля пробежал бы
5/9 пути, а Маша 4/9 пути, т.е. часть 0,8 от пути Коли.
А на самом деле Маша пробежала 0,75 от пути Коли.
Коля пробежал x м, а Маша на 1/4 меньше Коли, т.е. 0,75x м.
А вместе они пробежали S = x + 0,75x = 1,75x = 7x/4
x = 4/7*S - путь Коли; 0,75x = 3/7*S - путь Маши.
3/7 = 27/63 < 4/9 = 28/63, значит Маша пробежала меньше, чем могла бы, если бы они начали одновременно. Значит, Коля начал раньше.
Пусть Коля начал раньше на а мин.
Значит, когда Маша начала, он уже пробежал а/35 часть пути.
Осталось (35-a)/35 часть. Коля пробежал 5/9 от этой части.
Это будет (35-a)/35*5/9 = 5(35-a)/315 - пробежал Коля от
старта Маши до встречи. А всё вместе он пробежал 4/7 пути.
a/35 + 5(35-a)/315 = 4/7
Умножаем всё на 315 = 35*9 = 45*7
9a + 175 - 5a = 4*45 = 180
4a = 5
a = 5/4
Ближе всего это к 1 мин. Видимо, правильный ответ:
Г) Коля на 1 мин раньше.
Переставим в трёхзначном числе цифру 4 на место единиц и разложим получившееся число по разрядам, получим 100a+10b+4
Вычтем из числа 4ab число ab4, получим:
(400+10a+b)-(100a+10b+4)=400+10a+b-100a-10b-4=396-90a-9b
По условию, данная разность равна 279.
Составим уравнение:
396-90a-9b=279
-90a-9b=-117 |:(-9)
10a+b=13
Заметим, что 10a+b - поразрядная запись числа 13, т.е. a=1 и b=3
Следовательно, 4ab - это число 413
ab4 - это число 134
Находим сумму полученных трёхзначных чисел:
413+134=547
ответ: А) 547