Переписывая уравнение в виде y=-(x-2)²+3=-x²+4x-1, замечаем, что график представляет собой квадратическую параболу. Так как коэффициент при x² равен -1<0, то ветви параболы направлены вниз. Первый член -(x-2)² обращается в 0 лишь при x=2, а пи других значениях х он отрицателен. Поэтому точка x=2 является вершиной параболы, в которой функция достигает своего наибольшего значения Ymax=y(2)=-2²+4*2-1=3. То есть координаты вершины есть (2;3). Чтобы найти координаты точек пересечения параболы с осью ОХ, надо решить уравнение x²-4x+1=0. Находим дискриминант D=(-4)²-4*1*1=12=(2√3)². Тогда x1=(4+2√3)/2=2+√3, x2=(4-2√3)/2=2-√3. Значит, (2+√3;0) и (2-√3;0) - координаты точек пересечения параболы с осью ОХ. Отсюда ясно, что если с>3, то прямая y=c не пересекает параболу, при c=3 прямая y=3 имеет с параболой одну общую точку - вершину параболы. А при c<3 прямая пересекает параболу в 2 точках. ответ: при c<3.
Задать во Войти

Аноним
Геометрия
11 марта 21:01
периметр прямоугольника равен 46 см,а диагональ-17 см.Найдите стороны прямоугольника
ответ или решение1

Егоров Михаил
Для того, чтобы найти стороны прямоугольника рассмотрим прямоугольный треугольник, который образован двумя сторонами прямоугольника и диагональю.
Нам известен периметр прямоугольника 46 см. Формула для нахождения периметра:
P = 2(x + y), x и y — длина и ширина прямоугольника.
2(x + y) = 46;
x + y = 46 : 2;
x + y = 23.
y = 23 - x;
Теперь применим теорему Пифагора:
x2 + (23 - x)2 = 172;
x2 + 529 - 46x + x2 = 289;
2x2 - 46x + 529 - 289 = 0;
2x2 - 46x + 240 = 0;
x2 - 23x + 120 = 0.
Решаем квадратное уравнение и получаем:
D = 49;
x1 = 15; x2 = 8.
Итак, x = 15; y = 23 - 15 = 8.
x = 8; y = 23 - 8 = 15.
ответ: 8 см; 15 см.