1)При выполнении четырех арифметических действий (кроме деления на нуль) над рациональными числами всегда получаются рациональные числа. 2) Каждое рациональное число можно представить в виде бесконечной периодической десятичной дробиЭто бесконечная десятичная дробь, у которой начиная с некоторого десятичного знака повторяется одна и та же цифра или несколько цифр - период дроби. Например, 0,3333... = 0,(3) 1,057373... = 1,05(73) 3)Существуют стандартные обозначения для некоторых множеств. Например, − множество целых чисел; − множество рациональных чисел; − множество иррациональных чисел; − множество действительных чисел; − множество комплексных чисел.4)Это вместе взятые множества рациональных и иррациональных чисел, т.е. любое положительное число, отрицательное число или нуль. 5)Действительные числа образуют совокупность элементов, обладающую следующими свойствами. Если a и b - действительные числа (алгебраические, рациональные, целые, положительные целые), то таковыми же являются иa + b и ab (замкнутость), (1) a + b = b + a, ab = ba (коммутативность), (2) a + (b + c) = (a + b) + c = a + b + c, a(bc) = (ab)c = abc (ассоциативность), (3) a * 1 = a (единица), (4) a(b + c) = ab + ac (дистрибутивность),(5); из a + c = b + c следует a = b, из ca = cb, , следует a = b (сокращение). (6) 6) 7) Два числа, произведение которых равно 1, называются взаимно обратными. 8) 7-3 - числовое выражение, (8+3,2)·5,4 - тоже числовое выражение, и они имеют смысл 3+:)(+)-+ не имеет смысла 9)Математическое выражение, составленное из чисел, скобок и знаков арифметических действий называется числовым выражением. 10)Если в числовом выражении появляются буквы - оно становится буквенным выражением у+5, у-переменная величина 11)да например а+а+(а+а) причём а = 4 12)нет, потому что в нем нет букв 4 нельзя 4х можно 13) Одночлен − это произведение чисел и степеней переменных с натуральными показателями.
Например: 13a^3 b^2; 13x^12 y^11; 2(a^4)^3 c^7 (−9)z^11 . 14)Одночленом называется алгебраическое выражение, являющееся произведением букв и чисел.Эти буквы и числа называются множителями данного одночлена.Например, алгебраическое выражение ЗаЬс есть одночлен; его множителями являются число 3 и буквы а, Ь, с. 15)Одночлен – это произведение двух или нескольких сомножителей, каждый из которых либо число, либо буква, либо степень буквы. Например, 3 a 2 b 4 , b d 3 , – 17 a b c 16) Число 0 называется нулевым одночленом. 17)
2) Каждое рациональное число можно представить в виде бесконечной периодической десятичной дробиЭто бесконечная десятичная дробь, у которой начиная с некоторого десятичного знака повторяется одна и та же цифра или несколько цифр - период дроби. Например, 0,3333... = 0,(3)
1,057373... = 1,05(73)
3)Существуют стандартные обозначения для некоторых множеств. Например, − множество целых чисел; − множество рациональных чисел; − множество иррациональных чисел; − множество действительных чисел; − множество комплексных чисел.4)Это вместе взятые множества рациональных и иррациональных чисел, т.е. любое положительное число, отрицательное число или нуль.
5)Действительные числа образуют совокупность элементов, обладающую следующими свойствами. Если a и b - действительные числа (алгебраические, рациональные, целые, положительные целые), то таковыми же являются
иa + b и ab (замкнутость), (1)
a + b = b + a, ab = ba (коммутативность), (2)
a + (b + c) = (a + b) + c = a + b + c, a(bc) = (ab)c = abc (ассоциативность), (3)
a * 1 = a (единица), (4)
a(b + c) = ab + ac (дистрибутивность),(5);
из a + c = b + c следует a = b, из ca = cb, , следует a = b (сокращение). (6)
6)
7) Два числа, произведение которых равно 1, называются взаимно обратными.
8) 7-3 - числовое выражение,
(8+3,2)·5,4 - тоже числовое выражение, и они имеют смысл
3+:)(+)-+ не имеет смысла
9)Математическое выражение, составленное из чисел, скобок и знаков арифметических действий называется числовым выражением.
10)Если в числовом выражении появляются буквы - оно становится буквенным выражением
у+5, у-переменная величина
11)да например а+а+(а+а) причём а = 4
12)нет, потому что в нем нет букв
4 нельзя
4х можно
13) Одночлен − это произведение чисел и степеней переменных с
натуральными показателями.
Например: 13a^3 b^2; 13x^12 y^11; 2(a^4)^3 c^7 (−9)z^11 .
14)Одночленом называется алгебраическое выражение, являющееся произведением букв и чисел.Эти буквы и числа называются множителями данного одночлена.Например, алгебраическое выражение ЗаЬс есть одночлен; его множителями являются число 3 и буквы а, Ь, с.
15)Одночлен – это произведение двух или нескольких сомножителей, каждый из которых либо число, либо буква, либо степень буквы. Например, 3 a 2 b 4 , b d 3 , – 17 a b c
16) Число 0 называется нулевым одночленом.
17)
= 2с(с - 2*с*4 + 4²) - с²*2с - с² * (-10) =
= 2с(с² - 8с + 16) - 2с³ + 10с² =
= 2с*с² + 2с * (-8с) + 2с * 16 - 2с³ + 10с² =
= 2с³ - 16с² + 32с - 2с³ + 10с² =
= (2с³ - 2с³) + (- 16с² + 10с²) + 32с=
= 0 - 6с² + 32с =
= - 6с² + 32с
при с = 0,2
- 6 * 0,2² + 32*0,2 = - 6 * 0,04 + 6,4 = - 0,24 + 6,40 = 6,16
2.
1 + а - а² - а³ = (а + 1) + ( - а³ - а²) =
= (а + 1) + (-а²*а - а² * 1) = 1(а + 1) - а² (а + 1) =
= (1 - а²)(а + 1) = - (а² - 1²)(а + 1) = - (а - 1)(а + 1)(а + 1)
3.
(а² - 7)(а + 2) - (2а - 1)(а - 14) =
= а² * а + а² * 2 - 7а - 7*2 - (2а*а+2а*(-14) -1а -1* (-14))=
= а³ + 2а² - 7а - 14 - (2а² - 28а - а + 14) =
= а³ +2а² - 7а - 14 - (2а² - 29а + 14) =
= а³ + 2а² - 7а - 14 - 2а² + 29а - 14 =
= а³ + (2а² - 2а²) + (29а - 7а) - (14 + 14) =
= а³ + 22а - 28