Для нахождения площади фигуры, ограниченной линиями функций у = х^2, у = 0 и х = 2 построим сначала графики этих функций. График функции у = 0 - прямая, которая задаёт ось ОХ; график функции х = 2 - прямая, параллельная оси ОУ и пересекающая ось ОХ в точке х =2. График функции у = х^2 - парабола, построена поточечно путём подбора значений координаты х и вычислением значения функции у в каждой такой точке. То есть:
1) х = -4, у = (-4)^2 = 16, на графике откладываем точки х = -4 и у = 16;
2) х = -3, у = (-3)^2 = 9, на графике откладываем точки х = -3 и у = 9;
3)х = -2, у = (-2)^2 = 4, на графике откладываем точки х = -2 и у = 4;
4)х = -1, у = (-1)^2 = 1, на графике откладываем точки х = -1 и у = 1;
5)х = 0, у = 0, на графике откладываем точки х = 0 и у = 0;
6)х = 4, у = 4^2 = 16, на графике откладываем точки х = 4 и у = 16;
7) х = 3, у = 3^2 = 9, на графике откладываем точки х = 3 и у = 9;
8)х = 2, у = 2^2 = 4, на графике откладываем точки х = 2 и у = 4;
9)х = 1, у = 1^2 = 1, на графике откладываем точки х = 1 и у = 0.
Заштрихованная на графике область является фигурой, площадь которой необходимо вычислить (площадь криволинейной трапеции). Вычисляется она по формуле определенного интеграла S = ∫f(x) dx - g(x) dx (верхний предел b, нижний предел a). Найдём верхний и нижний пределы интеграла. Для этого воспользуемся построенным графиком. Определим, на каком промежутке функция у = х^2 находится выше оси ОХ (так как значение площади не может быть числом отрицательным). Это отрезок [0;2], значит верхним пределом интеграла будет два (b = 2), нижним ноль (а = 0).
Вычислим определенный интеграл функции у = х^2 с пределами 2 и 0, значение которого и будет равно значению площади:
S = ∫(х^2)dx (верхний предел 2, нижний 0).
Интегрируем с формулы интегрирования:
∫х^ n dx = x^(n+1) / n+1,
и получаем выражение х^3/3.
Далее воспользуемся формулой Ньютона - Лейбница и получим значение площади, равное 8/3 или ~ 2,67 кв.ед.
ответ: площадь фигуры, ограниченной линиями у = х^2, х = 2, у= 0 равна 8/3 или ~ 2,67 кв.единиц.
№1 х - количество купюр по 50 руб. (22- х) - количество купюр по 10 руб. Уравнение 50х + 10·(22-х) = 500 50х + 220 - 10х = 500 40х = 500-220 40х=280 х = 280 : 40 х = 7 купюр по 50 руб. 22- 7= 15 купюр по 10 руб ответ: 7 купюр по 50р.; 15 купюр по 10р. №2 У точки А(5; 0) берём х = 5; у = 0 и подставим в уравнение y = kx + b, получим первое уравнение 0 = 5k + b, иначе: 5k + b = 0 У точки В(-2;21) берём х = -2; у = 21 и подставим в уравнение y = kx + b, получим второе уравнение 21 = -2k + b, иначе: -2k + b = 21 А теперь решаем систему: {5k+b=0 {-2k+b=21 Из первого b = - 5k. Подставим его значение во второе уравнение {b = - 5k {-2k - 5k = 21 ║ ∨ {b = -5k {-7k=21 ║ ∨ {b = -5k {k=21 : (-7) ║ ∨ {b = -5k {k= - 3 ║ ∨ {b = -5 · (-3) => {b = 15 {k=- 3 => {k = -3 Подставим эти значения в уравнение у = kх + b и получим: у = -3х +15 - это и есть искомое уравнение. ответ: у = -3х+15.
Для нахождения площади фигуры, ограниченной линиями функций у = х^2, у = 0 и х = 2 построим сначала графики этих функций. График функции у = 0 - прямая, которая задаёт ось ОХ; график функции х = 2 - прямая, параллельная оси ОУ и пересекающая ось ОХ в точке х =2. График функции у = х^2 - парабола, построена поточечно путём подбора значений координаты х и вычислением значения функции у в каждой такой точке. То есть:
1) х = -4, у = (-4)^2 = 16, на графике откладываем точки х = -4 и у = 16;
2) х = -3, у = (-3)^2 = 9, на графике откладываем точки х = -3 и у = 9;
3)х = -2, у = (-2)^2 = 4, на графике откладываем точки х = -2 и у = 4;
4)х = -1, у = (-1)^2 = 1, на графике откладываем точки х = -1 и у = 1;
5)х = 0, у = 0, на графике откладываем точки х = 0 и у = 0;
6)х = 4, у = 4^2 = 16, на графике откладываем точки х = 4 и у = 16;
7) х = 3, у = 3^2 = 9, на графике откладываем точки х = 3 и у = 9;
8)х = 2, у = 2^2 = 4, на графике откладываем точки х = 2 и у = 4;
9)х = 1, у = 1^2 = 1, на графике откладываем точки х = 1 и у = 0.
Заштрихованная на графике область является фигурой, площадь которой необходимо вычислить (площадь криволинейной трапеции). Вычисляется она по формуле определенного интеграла S = ∫f(x) dx - g(x) dx (верхний предел b, нижний предел a). Найдём верхний и нижний пределы интеграла. Для этого воспользуемся построенным графиком. Определим, на каком промежутке функция у = х^2 находится выше оси ОХ (так как значение площади не может быть числом отрицательным). Это отрезок [0;2], значит верхним пределом интеграла будет два (b = 2), нижним ноль (а = 0).
Вычислим определенный интеграл функции у = х^2 с пределами 2 и 0, значение которого и будет равно значению площади:
S = ∫(х^2)dx (верхний предел 2, нижний 0).
Интегрируем с формулы интегрирования:
∫х^ n dx = x^(n+1) / n+1,
и получаем выражение х^3/3.
Далее воспользуемся формулой Ньютона - Лейбница и получим значение площади, равное 8/3 или ~ 2,67 кв.ед.
ответ: площадь фигуры, ограниченной линиями у = х^2, х = 2, у= 0 равна 8/3 или ~ 2,67 кв.единиц.
Подробнее - на -
х - количество купюр по 50 руб.
(22- х) - количество купюр по 10 руб.
Уравнение
50х + 10·(22-х) = 500
50х + 220 - 10х = 500
40х = 500-220
40х=280
х = 280 : 40
х = 7 купюр по 50 руб.
22- 7= 15 купюр по 10 руб
ответ: 7 купюр по 50р.; 15 купюр по 10р.
№2
У точки А(5; 0) берём х = 5; у = 0 и подставим в уравнение y = kx + b,
получим первое уравнение 0 = 5k + b, иначе:
5k + b = 0
У точки В(-2;21) берём х = -2; у = 21 и подставим в уравнение y = kx + b,
получим второе уравнение 21 = -2k + b, иначе:
-2k + b = 21
А теперь решаем систему:
{5k+b=0
{-2k+b=21
Из первого b = - 5k.
Подставим его значение во второе уравнение
{b = - 5k
{-2k - 5k = 21
║
∨
{b = -5k
{-7k=21
║
∨
{b = -5k
{k=21 : (-7)
║
∨
{b = -5k
{k= - 3
║
∨
{b = -5 · (-3) => {b = 15
{k=- 3 => {k = -3
Подставим эти значения в уравнение у = kх + b и получим:
у = -3х +15 - это и есть искомое уравнение.
ответ: у = -3х+15.