В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
2comS
2comS
29.12.2022 21:48 •  Алгебра

найти обратно пропорциональные функции с графиком
1)y = 4:x
2)y=5:x
3)y=3:x

Показать ответ
Ответ:
grachikovaleksei
grachikovaleksei
17.12.2020 10:46
Левая часть неравенства должна существовать, поэтому 
a + x >= 0,
a - x >= 0

Переписываем систему в виде
-a <= x <= a,
|x| <= a
откуда видно, что a >= 0.
Можно сразу записать, что если a < 0, то решений нет.

Тогда обе части исходного неравенства неотрицательные, и можно возводить в квадрат.
a + x + 2sqrt(a^2 - x^2) + a - x > a^2
sqrt(a^2 - x^2) > a(a - 2)/2

Если правая часть отрицательна, то решение неравенства - все значения, при которых корень существует.
a(a - 2)/2 < 0 при 0 < a < 2, так что еще одна часть ответа такова: если 0 < a < 2, то -a <= x <= a.

Осталось рассмотреть случай, когда a(a - 2) >= 0. Тогда вновь можно возводить неравенство в квадрат.
a^2 - x^2 > (a^4 - 4a^3 + 4a^2)/4
x^2 < a^3 (4 - a)/4.

У этого неравенства есть шанс иметь решения, если правая часть строго положительна, поэтому предпоследняя часть ответа: если a = 0 или a >= 4, решений нет. Осталось рассмотреть последний случай 2 <= a < 4.

Заметим, что при таких a правая часть меньше a^2, ведь 
a^3 (4 - a) / 4 / a^2 = a (4 - a) / 4 < 2 * (4 - 2) / 4 = 1 (известно, что квадратичная парабола a (4 - a) / 4 достигает максимального значения в вершине), поэтому все корни существуют, и последняя часть ответа: если 2 <= a < 4, то -sqrt(a^3 (4 - a))/2 < x < sqrt(a^3 (4 - a))/2.

Собираем всё в одно и получаем ответ.
ответ. Если 0 < a < 2, то -a <= x <= a; если 2 <= a < 4, то -sqrt(a^3 (4 - a))/2 < x < sqrt(a^3 (4 - a))/2, для остальных a решений нет.
0,0(0 оценок)
Ответ:
Алексей22891
Алексей22891
20.05.2020 10:34

(см. объяснение)

Объяснение:

5x-|bx+3|=0

Самый верный решить любой параметр - это постараться построить его в координатах (b; x).

Попробуем применить этот прием здесь.

Сначала заметим, что при x=0 равенство неверно при любом значении параметра. Тогда на протяжении решения при необходимости будем спокойно делить на x.

Раскроем |bx+3|:

bx+3=0,\;\;b=-\dfrac{3}{x}

Видим гиперболу в координатах (b; x).

Построим ее и просчитаем знаки в областях, которые она образует, подставляя координаты соответствующих точек в bx+3.

Тогда при bx+3\ge0:

5x-bx-3=0\\b=-\dfrac{3}{x}+5

Строим фрагмент этого графика в определенных выше областях.

При bx+3:

5x+bx+3=0\\b=-\dfrac{3}{x}-5

Тоже строим фрагмент этого графика в определенных выше областях.

Получим график уравнения:

(см. прикрепленный файл)

Итого:

При b\ge5 уравнение не имеет корней.При -5\le b уравнение имеет единственный корень.При b уравнение имеет ровно два различных корня.

Задание выполнено!


Решите уравнение при всех значениях параметра b
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота