В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
kiska625
kiska625
29.12.2022 07:15 •  Алгебра

Найти общее решение дифференциального уравнения: 1) y'''=sinx;

2)y'''=e^{2x}

Показать ответ
Ответ:
незнайка1185
незнайка1185
13.08.2020 11:58

1)\ \ \ y'''=sinx\\\\y''=\int sinx\, dx=-cosx+C_1\\\\y'=\int (-cosx+C_1)\, dx=-sinx+C_1x+C_2\\\\y=\int (-sinx+C_1x+C_2)\, dx=cosx+C_1\cdot \dfrac{x^2}{2}+C_2\cdot x+C_3\\\\\\2)\ \ \ y'''=e^{2x}\\\\y''=\int e^{2x}\, dx=\dfrac{1}{2}\cdot e^{2x}+C_1\\\\y'=\int (\dfrac{1}{2}\cdot e^{2x}+C_1)\, dx=\dfrac{1}{4}\cdot e^{2x}+C_1\cdot x+C_2\\\\y=\int (\dfrac{1}{4}\cdot e^{2x}+C_1\cdot x+C_2)\, dx=\dfrac{1}{8}\cdot e^{2x}+C_1\cdot \dfrac{x^2}{2}+C_2\cdot x+C_3

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота