Пусть О - центр окружности, описанной около треугольника АBC. Тогда ∠BOC=2∠BAC=50°=∠BDC. Значит D лежит на окружности, описанной около треугольника BOC. Аналогично, ∠BOA=2∠BCA=100°=∠BDA. Значит D лежит на окружности, описанной около треугольника BOA, а значит D - одна из двух точек пересечения этих окружностей, которые есть О и B. Очевидно, что D совпадать с B не может, значит D совпадает с О. Т.е. D - центр окружности, описанной около ABC. Отсюда BDC - равнобедренный, ∠DBC=(180°-50°)/2=65° и значит угол между диагоналями ABCD равен 180°-∠DBC-∠BCA=180°-65°-50°=65°.
Знаменатель нас с точки зрения экстремумов не интересует, только отметим, что знаменатель не может быть равен нулю, значит x^2 не может быть равен 4, следовательно две точки нужно выкинуть: -2 и 2 - в них функция терпит разрыв. Кстати, это по ходу означает, что производная в них вообще не существует.
Приплыли. Отсюда видим, что найденное выражение обратится в ноль при трёх значениях х: х = 0; х = -корень(12) ; х=корень(12) в этих трёх этих точках производная будет равна нулю, и они кандидаты на экстремумы. Однако прикидка знаков показывает, что при х=-1 нуля функция положительна (ибо и числитель, и знаменатель оба отрицательны), а при х=1 отрицательна (ибо числитель положителен, а знаменатель отрицателен), а раз такое дело, то х = 0 не является экстремумом. За такую подлость выкидываем его из списка.
Итого, остаются два экстремума: х=-корень(12) и х = корень(12).
Ну, что знал - всё рассказал. Если обманул, то чур не виноват. Лучше проверь за мной.
Тогда ∠BOC=2∠BAC=50°=∠BDC.
Значит D лежит на окружности, описанной около треугольника BOC.
Аналогично, ∠BOA=2∠BCA=100°=∠BDA.
Значит D лежит на окружности, описанной около треугольника BOA,
а значит D - одна из двух точек пересечения этих окружностей, которые есть О и B. Очевидно, что D совпадать с B не может, значит D совпадает с О. Т.е. D - центр окружности, описанной около ABC. Отсюда BDC - равнобедренный, ∠DBC=(180°-50°)/2=65° и значит угол между диагоналями ABCD равен 180°-∠DBC-∠BCA=180°-65°-50°=65°.
Итак, нужно посчитать производную твоей функции, и посмотреть где она равна нулю. Собственно, к этому всё сводится.
f'(x) = ( (x^3 )' * (x^2-4) - (x^3)*(x^2-4)' ) / (x^2-4)^2
Знаменатель нас с точки зрения экстремумов не интересует, только отметим, что знаменатель не может быть равен нулю, значит x^2 не может быть равен 4, следовательно две точки нужно выкинуть: -2 и 2 - в них функция терпит разрыв. Кстати, это по ходу означает, что производная в них вообще не существует.
Далее продолжаем курочить только числитель, пытаясь найти его нули.
3*x^2 * ( x^2 - 4 ) - x^3 * (x^2 ' - 4') = 0
3*x^4 - 12 * x^2 - 2 * x^4 = 0
x^4 - 12 * x^2 = 0
x^2 * ( x^2 - 12 ) = 0
Приплыли. Отсюда видим, что найденное выражение обратится в ноль при трёх значениях х:
х = 0; х = -корень(12) ; х=корень(12)
в этих трёх этих точках производная будет равна нулю, и они кандидаты на экстремумы. Однако прикидка знаков показывает, что при х=-1 нуля функция положительна (ибо и числитель, и знаменатель оба отрицательны), а при х=1 отрицательна (ибо числитель положителен, а знаменатель отрицателен), а раз такое дело, то х = 0 не является экстремумом. За такую подлость выкидываем его из списка.
Итого, остаются два экстремума: х=-корень(12) и х = корень(12).
Ну, что знал - всё рассказал. Если обманул, то чур не виноват. Лучше проверь за мной.