В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Helryuwi12
Helryuwi12
08.11.2021 16:16 •  Алгебра

найти ошибки в решении неравенства
правильный ответ [-2;2)

Показать ответ
Ответ:
Fjkskdnxk
Fjkskdnxk
13.10.2020 01:15

ответ: x∈[-2;2).

Объяснение:

log₀,₅(12-6x)≥log₀,₅(x²-6x+8)+₀,₅(x+3)

ОДЗ:

{12-6x>0 |÷6   {2-x>0                {x<2                         {x<2

{x²-6x+8>0     {x²-4x-2x+8>0   {(x*(x-4)-2*(x-4)>0    {(x-4)(x-2)>0

{x+3>0            {x>-3                  {x>-3                         {x>-3  

{x∈(-∞;2)

{x∈(-∞;2)U(4;+∞)

{x∈(-3;+∞)      ⇒

x∈(-3;2).

log₀,₅(6*(2-x))-log₀,₅((x-2)(x-4))-₀,₅(x+3)≥0

log_{0,5} \frac{6*(2-x)}{(x-2)(x-4)(x+3)} \geq 0\\\frac{6*(2-x)}{(x-2)(x-4)(x+3)} \leq 0,5^{0} \\\frac{-6*(x-2)}{(x-2)(x-4)(x+3)} \leq 1\\-6*(x-2) \leq (x-2)(x-4)(x+3)\\(x-2)(x-4)(x+3)+6*(x-2)\geq 0\\(x-2)*((x-4)(x+3)+6)\geq 0\\(x-2)(x^{2} -x-12+6)\geq 0\\(x-2)(x^{2} -x-6)\geq 0\\(x-2)(x^{2} -3x+2x-6)\geq 0\\(x-2)(x*(x-3)+2*(x-3))\geq 0\\(x-2)(x-3)(x+2)\geq 0

-∞__-__-2__+__2__-__3__+__+∞   ⇒

x∈[-2;2]U[3;+∞)

Согласно ОДЗ: x∈[-2;2).

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота