В решении.
Объяснение:
Используя график функции у = x² - 12x + 32, найдите решение неравенства x² - 12x + 32 ≥ 0.
Приравнять к нулю и решить квадратное уравнение:
x² - 12x + 32 = 0
D=b²-4ac =144 - 128 = 16 √D=4
х₁=(-b-√D)/2a
х₁=(12-4)/2
х₁=8/2
х₁=4;
х₂=(-b+√D)/2a
х₂=(12+4)/2
х₂=16/2
х₂=8;
Уравнение квадратичной функции, график - парабола, ветви направлены вверх, пересекают ось Ох в точках х= 4 и х= 8.
Решение неравенства: х∈(-∞; 4]∪[8; +∞).
Неравенство нестрогое, скобки квадратные, а знаки бесконечности всегда с круглой скобкой.
Для квадратного трехчлена x² + 14x + 13 = 0
a) выделите полный квадрат .
Для выделения полного квадрата суммы в выражении не хватает квадрата второго числа. Судя по удвоенному произведению первого числа на второе 14х, второе число равно 7, а квадрат его=49.
(х² + 14х + 49) - 49 + 13 = 0
49 добавили, 49 и отнять.
Свернуть квадрат суммы:
(х + 7)² - 36 = 0.
b) разложите квадратный трехчлен на множители.
Найти корни уравнения:
(х + 7)² - 36 = 0
(х + 7)² = 36
Извлечь корень из обеих частей уравнения:
х + 7 = ±√36
х + 7 = ±6
х₁ = 6 - 7
х₁ = -1;
х₂ = -6 - 7
х₂ = -13.
Разложение:
x² + 14x + 13 = (х + 1)*(х + 13).
В решении.
Объяснение:
Используя график функции у = x² - 12x + 32, найдите решение неравенства x² - 12x + 32 ≥ 0.
Приравнять к нулю и решить квадратное уравнение:
x² - 12x + 32 = 0
D=b²-4ac =144 - 128 = 16 √D=4
х₁=(-b-√D)/2a
х₁=(12-4)/2
х₁=8/2
х₁=4;
х₂=(-b+√D)/2a
х₂=(12+4)/2
х₂=16/2
х₂=8;
Уравнение квадратичной функции, график - парабола, ветви направлены вверх, пересекают ось Ох в точках х= 4 и х= 8.
Решение неравенства: х∈(-∞; 4]∪[8; +∞).
Неравенство нестрогое, скобки квадратные, а знаки бесконечности всегда с круглой скобкой.
В решении.
Объяснение:
Для квадратного трехчлена x² + 14x + 13 = 0
a) выделите полный квадрат .
Для выделения полного квадрата суммы в выражении не хватает квадрата второго числа. Судя по удвоенному произведению первого числа на второе 14х, второе число равно 7, а квадрат его=49.
(х² + 14х + 49) - 49 + 13 = 0
49 добавили, 49 и отнять.
Свернуть квадрат суммы:
(х + 7)² - 36 = 0.
b) разложите квадратный трехчлен на множители.
Найти корни уравнения:
(х + 7)² - 36 = 0
(х + 7)² = 36
Извлечь корень из обеих частей уравнения:
х + 7 = ±√36
х + 7 = ±6
х₁ = 6 - 7
х₁ = -1;
х₂ = -6 - 7
х₂ = -13.
Разложение:
x² + 14x + 13 = (х + 1)*(х + 13).