Пусть a, b, c – положительные числа, сумма которых равна 1. Докажите неравенство:
Решение 1
Заметим, что (мы использовали неравенство между средним арифметическим и средним гармоническим для положительных x, y). Осталось сложить три аналогичных неравенства.
Решение 2
Не умаляя общности, можно считать, что a ≥ b ≥ c, тогда 1 – c² ≥ 1 – b² ≥ 1 – a² и, следовательно,
Заметим, что Таким образом, нужно доказать неравенство
Поскольку сумма числителей равна 0, неравенство будет доказано, если мы заменим знаменатели на равные таким образом, что каждая дробь при этом не увеличится. Если a ≥ b ≥ ⅓ ≥ c, то заменим все знаменатели на 1 – c², в результате отрицательное слагаемое не изменится, а положительные не увеличатся. Если a ≥ ⅓ b ≥ c, то заменим все знаменатели на 1 – b², тогда положительное слагаемое и одно из отрицательных только уменьшатся, а второе отрицательное слагаемое останется неизменным.
1) (a+6)(a-9)>(a+11)(a-14)
a²+6a-9a-54>a²+11a-14a-154
a²+6a-9a-54-(a²+11a-14a-154)>0
a²+6a-9a-54-a²-11a+14a+154>0
100>0 верное неравенство при любом значении переменной а.
Доказано.
2) (a-10)²-12<(a-7)(a-13)
a²-20a+100-12<a²-7a-13a+91
a²-20a+88<a²-20a+91
a²-20a+88-(a²-20a+91)<0
a²-20a+88-(a²-20a+91)<0
a²-20a+88-a²+20a-91<0
-3<0 верное неравенство при любом значении переменной а.
Доказано.
3) (4a-1)(4a+1)-(5a-7)²<14·(5a-1)
16a²-1-(25a²-70a+49)<70a-14
16a²-1-25a²+70a-49<70a-14
-9a²+70a-50<70a-14
-9a²+70a-50-(70a-14)<0
-9a²+70a-50-70a+14<0
-9a²-36<0
-9·(a²+4)<0 | : (-9) делим обе части на на отрицательное число, при этом знак неравенства изменяется на противоположный.
-9·(a²+4) : (-9) > 0:(-9)
a²+4 > 0 верное неравенство при любом значении переменной а.
Доказано.
Пусть a, b, c – положительные числа, сумма которых равна 1. Докажите неравенство:
Решение 1
Заметим, что (мы использовали неравенство между средним арифметическим и средним гармоническим для положительных x, y). Осталось сложить три аналогичных неравенства.
Решение 2
Не умаляя общности, можно считать, что a ≥ b ≥ c, тогда 1 – c² ≥ 1 – b² ≥ 1 – a² и, следовательно,
Заметим, что Таким образом, нужно доказать неравенство
Поскольку сумма числителей равна 0, неравенство будет доказано, если мы заменим знаменатели на равные таким образом, что каждая дробь при этом не увеличится. Если a ≥ b ≥ ⅓ ≥ c, то заменим все знаменатели на 1 – c², в результате отрицательное слагаемое не изменится, а положительные не увеличатся. Если a ≥ ⅓ b ≥ c, то заменим все знаменатели на 1 – b², тогда положительное слагаемое и одно из отрицательных только уменьшатся, а второе отрицательное слагаемое останется неизменным.
Выбирай 1 или 2