Чтобы получить решение квадратного уравнения графическим Квадратное уравнение разделяют на две функции, линейную и квадратичную. А затем строят графики этих функций на одной координатной плоскости.
Квадратное уравнение
1.ax2+bx+c=0
разбивают на две функции
2.y1=ax23.y2=−(bx+c)
Функция y1 это парабола. Функция y2 это прямая линия. Решением, корнями квадратного уравнения являются точки пересечения этих функций.
При решении могут представиться три варианта:
Функции имеют две точки пересечения - два корня квадратного уравнения действительны и различны между собой.Функции имеют одну точку пересечения - квадратное уравнение имеет только один действительный корень.Функции не имеют ни одной точки пересечения - тогда оба корня квадратного уравнения мнимые, комплексные числа.
ОДЗ: 21 + 4x - x² > 0
21 + 4x - x² ≠ 1
7 - x > 0
x + 3 > 0
x + 3 ≠ 1
21 + 4x - x² > 0
x² - 4x - 21 < 0
x² - 4x - 21 = 0
По теореме Виета: x₁ = -3, x₂ = 7.
x² - 4x - 21 < 0
x ∈ (-3; 7)
21 + 4x - x² ≠ 1
x² - 4x - 20 ≠ 0
D = 16 + 80 = 96
7 - x > 0
x < 7
x + 3 > 0
x > -3
x + 3 ≠ 1
x ≠ -2
Окончательно, ОДЗ: x ∈ (-3; ) U (; -2) U (-2; ) U (; 7).
Решаем само неравенство:
Замена:
t ≠ 1
t ≠ -1
Делаем обратную замену:
Учитывая ОДЗ, окончательный ответ: x ∈ (-3; ) U (; -2) U (-2; 2) U (2; ) U (; 7).
Чтобы получить решение квадратного уравнения графическим Квадратное уравнение разделяют на две функции, линейную и квадратичную. А затем строят графики этих функций на одной координатной плоскости.
Квадратное уравнение
1.ax2+bx+c=0разбивают на две функции
2.y1=ax23.y2=−(bx+c)Функция y1 это парабола. Функция y2 это прямая линия. Решением, корнями квадратного уравнения являются точки пересечения этих функций.
При решении могут представиться три варианта:
Функции имеют две точки пересечения - два корня квадратного уравнения действительны и различны между собой.Функции имеют одну точку пересечения - квадратное уравнение имеет только один действительный корень.Функции не имеют ни одной точки пересечения - тогда оба корня квадратного уравнения мнимые, комплексные числа.