В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
fadrakla
fadrakla
26.05.2023 22:53 •  Алгебра

Найти площадь фигуры, ограниченной линиями: у= y=

Показать ответ
Ответ:
кратос2315
кратос2315
05.10.2020 16:00
Смотрим график. Фигура располагается на промежутке [0;1]
График функции y=x^2+x находится выше графика функции y=2x^2, следовательно, чтоб найти площадь найденной фигуры, запишем интеграл:

S= \int\limits^1_0 {(x^2+x-2x^2)} \, dx = \int\limits^1_0 {(x-x^2)} \, dx =\int\limits^1_0 {x} \, dx -\int\limits^1_0 {x^2} \, dx = \\ \\ = \frac{x^2}{2} |_0^1- \frac{x^3}{3} |_0^1= \frac{1^2}{2} - \frac{0^2}{2}-( \frac{1^3}{3}- \frac{0^3}{3})= \frac{1}{2} - \frac{1}{3} = \frac{3-2}{6} = \frac{1}{6} \\ \\ S= \frac{1}{6}

Найти площадь фигуры, ограниченной линиями: у= y=
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота