В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
daryaavdeeva01
daryaavdeeva01
11.11.2022 09:31 •  Алгебра

Найти площадь фигуры ограниченной линиями y=6x-x² и y=o

Показать ответ
Ответ:
lenatvoya
lenatvoya
09.10.2020 21:05

у = y = 6x-x²;

у = 0

S = ?

Решение

y = 6x-x²  - парабола с ветвями, обращенными вниз, у = 0 - прямая, проходящая по оси абсцисс.

6х - х² = 0;  х(х-6) = 0 ; х₁ = 0 и х₂= 6 ---- точки пересечения параболы у = 6=х² с прямой у = 0

    Площадь фигуры, ограниченной линиями заданных функций,находится с определенного интеграла, пределы интегрирования 0 и 6

\displaystyle \int\limits^6_0 {(6x-x^{2} )} \, dx=(3x^{2} -\frac{x^{3} }{3})|_{o} ^{6} =3*6^{2}-\frac{6^{3} }{3} -3*0^{2}+\frac{0^{3} }{3}=\\ 3*36-\frac{216}{3}=108-72=36

ответ:  36


Найти площадь фигуры ограниченной линиями y=6x-x² и y=o
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота