разделите обе части уравнения на -1, при этом знак неравенства меняем на противоположный (x-3)(x+5)<0, отмечаем на числовой прямой точки 3 и -5, ищем знаки на каждом из промежутков. знаки будут такими(считая слева направо) +,-,+.
решением будет интервал от -5 до 3 не включая концы промежутка.
второе неравенство аналогично, вынесем минус из второй скобки, получим
-(x+1)(x-3)(x-2)<=0. меняем знак неравенства (делим на -1)
x+1)(x-3)(x-2)>=0 отмечаем на числовой прямой точки -1,3,2. ищем знаки на каждом из промежутков (слева направо знаки будут такими) -,+,-,+. решением будут 2 промежутка: от -1до 2 и от 3 до +бесконечности.
Обозначим трапецию АВСD, AB=CD, АD=16√3, ∠BAD=60°. ∠ABD=90°. Треугольник АВD- прямоугольный, ⇒ ∠АDB=180°-90°-60°=30°. Сторона АВ противолежит углу 30° и равна половине AD. АВ=8√3. Опустим высоту ВН на большее основание. Треугольник АВН - прямоугольный, ∠ АВН=180°-90°-60°=30°. Катет АН=АВ:2=4√3. ⇒ DH=AD-AH=16√3-4√3=12√3. Высота ВН=АВ•sin60°=8√3•(√3/2)=12. Высота равнобедренной трапеции, проведенная из тупого угла, дели основание на отрезки, больший из которых равен полусумме оснований, меньший - их полуразности⇒ DH=(AD+BC):2. Площадь трапеции равна произведению высоты на полусумму оснований. S(ABCD)=BH•DH=12•12√3=144√3 (ед. площади)
Как вариант решения можно доказать, что треугольник DCB - равнобедренный, ВС=CD=AB, вычислить длину высоты и затем площадь ABCD.
разделите обе части уравнения на -1, при этом знак неравенства меняем на противоположный (x-3)(x+5)<0, отмечаем на числовой прямой точки 3 и -5, ищем знаки на каждом из промежутков. знаки будут такими(считая слева направо) +,-,+.
решением будет интервал от -5 до 3 не включая концы промежутка.
второе неравенство аналогично, вынесем минус из второй скобки, получим
-(x+1)(x-3)(x-2)<=0. меняем знак неравенства (делим на -1)
x+1)(x-3)(x-2)>=0 отмечаем на числовой прямой точки -1,3,2. ищем знаки на каждом из промежутков (слева направо знаки будут такими) -,+,-,+. решением будут 2 промежутка: от -1до 2 и от 3 до +бесконечности.
Обозначим трапецию АВСD, AB=CD, АD=16√3, ∠BAD=60°. ∠ABD=90°. Треугольник АВD- прямоугольный, ⇒ ∠АDB=180°-90°-60°=30°. Сторона АВ противолежит углу 30° и равна половине AD. АВ=8√3. Опустим высоту ВН на большее основание. Треугольник АВН - прямоугольный, ∠ АВН=180°-90°-60°=30°. Катет АН=АВ:2=4√3. ⇒ DH=AD-AH=16√3-4√3=12√3. Высота ВН=АВ•sin60°=8√3•(√3/2)=12. Высота равнобедренной трапеции, проведенная из тупого угла, дели основание на отрезки, больший из которых равен полусумме оснований, меньший - их полуразности⇒ DH=(AD+BC):2. Площадь трапеции равна произведению высоты на полусумму оснований. S(ABCD)=BH•DH=12•12√3=144√3 (ед. площади)
Как вариант решения можно доказать, что треугольник DCB - равнобедренный, ВС=CD=AB, вычислить длину высоты и затем площадь ABCD.