( кружочки около чисел закрашенные) .Определяется знак любого промежутка , далее знаки чередуются, т.к. каждый множитель данного неравенства нечетной степени. Я брала х=0 ( третий промежуток) . Значение левой части отрицательно.
Выбираем промежутки , где стоит знак "-".
х∈ (-∞ ; -7] ∪ [-5;-9]
3)(х²-64)(х²+10х+9)≥0.
Разложим на множители х²+10х+9 применив т. Виета : х₁+х₂=-10 , х₁*х₂=9 ,х₁=-1,х₂=-9. Получим х²+10х+9=(х+1)(х+9).
Разложим на множители х²-64 по формуле разности квадратов :
х²-64=(х-8)(х+8).
Получили неравенство (х-8)(х+8)(х+1)(х+9)≥0
Нули каждой скобки : -9, -8, -1, 8. Кружочки на схеме закрашены .
Метод интервалов : При х=0, знак 4 промежутка "-". Все знаки чередуются , т.к. каждый множитель данного неравенства нечетной степени.
+ - + - +
-9 -8 -1 8
Выбираем те , где знак "+". х∈ (-∞ ; -9] ∪ [-8;-1]∪ [8;+∞)/
7)(3-х)²(х+2)²(х-1) (2x-5)<0.
Нули каждой скобки : -2; 1; 2,5 ; 3. Кружочки на схеме НЕ закрашены .
Метод интервалов : При х=0, знак 2 промежутка "+". Знаки чередуются только у значений нечетной степени. Около значений скобок четных степеней не чередуются ( т.е около чисел -2 и 3)
- - + - -
-2 1 2,5 3
Выбираем те , где знак "-". х∈ (-∞ ; -2) ∪ (-2; 1) ∪ (2,5;3) ∪ (3;+∞)
Решить неравенства методом интервалов.
Объяснение:
1) (х+7) (х+5 )(х-9)≤0
Найдем нули : х+7=0 →х=-7 ; х+5=0 →х=-5 ; х-9=0 →х=9.
Метод интервалов - + - +
-7-59
( кружочки около чисел закрашенные) .Определяется знак любого промежутка , далее знаки чередуются, т.к. каждый множитель данного неравенства нечетной степени. Я брала х=0 ( третий промежуток) . Значение левой части отрицательно.
Выбираем промежутки , где стоит знак "-".
х∈ (-∞ ; -7] ∪ [-5;-9]
3)(х²-64)(х²+10х+9)≥0.
Разложим на множители х²+10х+9 применив т. Виета : х₁+х₂=-10 , х₁*х₂=9 ,х₁=-1,х₂=-9. Получим х²+10х+9=(х+1)(х+9).
Разложим на множители х²-64 по формуле разности квадратов :
х²-64=(х-8)(х+8).
Получили неравенство (х-8)(х+8)(х+1)(х+9)≥0
Нули каждой скобки : -9, -8, -1, 8. Кружочки на схеме закрашены .
Метод интервалов : При х=0, знак 4 промежутка "-". Все знаки чередуются , т.к. каждый множитель данного неравенства нечетной степени.
+ - + - +
-9 -8 -1 8
Выбираем те , где знак "+". х∈ (-∞ ; -9] ∪ [-8;-1]∪ [8;+∞)/
7)(3-х)²(х+2)²(х-1) (2x-5)<0.
Нули каждой скобки : -2; 1; 2,5 ; 3. Кружочки на схеме НЕ закрашены .
Метод интервалов : При х=0, знак 2 промежутка "+". Знаки чередуются только у значений нечетной степени. Около значений скобок четных степеней не чередуются ( т.е около чисел -2 и 3)
- - + - -
-2 1 2,5 3
Выбираем те , где знак "-". х∈ (-∞ ; -2) ∪ (-2; 1) ∪ (2,5;3) ∪ (3;+∞)
x² + 8x + 16 = 3x + 40
x² + 5x - 24 = 0
Найдем дискриминант квадратного уравнения:
D = b² - 4ac = 5² - 4·1·(-24) = 25 + 96 = 121
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = (-5 - √121) / 2*1 = -8
x2 = (-5 + √121) / 2*1 = 3
(2x - 3)² = 11x - 19
4x² - 12x + 9 = 11x -19
4x² - 23x + 28 = 0
Найдем дискриминант квадратного уравнения:
D = b² - 4ac = (-23)² - 4·4·28 = 529 - 448 = 81
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = (23 - √81) / 2*4 = 14/8 = 1.75
x2 = (23 + √81) / 2*4 = 4
(x+1)² = 7918 - 2x
x² + 2x + 1 = 7918 - 2x
x² + 4x - 7917 = 0
Найдем дискриминант квадратного уравнения:
D = b² - 4ac = 4² - 4·1·(-7917) = 16 + 31668 = 31684
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = (-4 - √31684) / 2*1 = -91
x2 = (-4 + √31684) / 2*1 = 87
(x+2)² = 3131 - 2x
x² + 4x + 4 = 3131 - 2x
x² + 6x - 3127 = 0
Найдем дискриминант квадратного уравнения:
D = b² - 4ac = 6² - 4·1·(-3127) = 36 + 12508 = 12544
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = (-6 - √12544) / 2*1 = -59
x2 = (-6 + √12544) / 2*1 = 53