№1. Определить, проходит ли график функции y = x² – 6 через следующие точки:
A (1; -5); B (-3; -3); C (-3; 3); D (10; 94); E (5; -19); F (-5; 19).
Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение, если левая часть будет равна правой, значит, точка принадлежит графику и наоборот.
A (1; -5) B (-3; -3)
y=x²–6 y=x²–6
-5=1²-6 -3=(-3)²-6
-5= -5, проходит. -3≠3, не проходит.
C (-3; 3) D (10; 94)
3=(-3)²-6 94=10²-6
3=3, проходит. 94=94, проходит.
E (5; -19) F (-5; 19)
-19=5²-6 19=(-5)²-6
-19≠19, не проходит. 19=19, проходит.
№2. Построить график функции:
y = -4x + 1.
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
1.Преобразовать в многочлен
а) (а + 6)²=a²+12a+36
б) (7y – x)²=49y²-14xy+x²
в) (5b – 1)(5b + 1)=25b²-1
г) (4a + 3b^4)(4a – 3b^4)=16a²-9b^8
2. Разложить на множители:
а) b² – 16=(b-4)(b+4)
б) a² + 8a + 16=(a+4)²=(a+4)(a+4)
в) 49a²b^4 – 121c^4=(7ab²-11c²)(7ab²+11c²)
г) (x + 3)² -(x – 3)²=[(x+3)-(x-3)][(x+3)+(x-3)]=
=6*2x=12x
3. Упростить выражение
(a – 3)² – 3a(a – 2)=a²-6a+9-3a²+6a=-2a²+9
4. Решите уравнение:
а) (x – 3)² – x(x + 2,7) = 9
x^2-6x+9-x²-2,7x=9
-8,7x=0
x=0
б) 9y² – 25 = 0
(3y-5)(3y+5)=0
3y-5=0 , 3y+5=0
3y=5 3y=-5
Y1=5/3 y2=-5/3
ili
9y²=25
y²=25/9
y=+-5/3
5. Выполнить действия:
a)(x²+4)(x-2)(x+2)=(x²+4)(x²-4)=x^4-16
б) (3a² – 6b²)(3a² + 6b²)=9a^4-36b^4
Объяснение:
№1. Определить, проходит ли график функции y = x² – 6 через следующие точки:
A (1; -5); B (-3; -3); C (-3; 3); D (10; 94); E (5; -19); F (-5; 19).
Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение, если левая часть будет равна правой, значит, точка принадлежит графику и наоборот.
A (1; -5) B (-3; -3)
y=x²–6 y=x²–6
-5=1²-6 -3=(-3)²-6
-5= -5, проходит. -3≠3, не проходит.
C (-3; 3) D (10; 94)
3=(-3)²-6 94=10²-6
3=3, проходит. 94=94, проходит.
E (5; -19) F (-5; 19)
-19=5²-6 19=(-5)²-6
-19≠19, не проходит. 19=19, проходит.
№2. Построить график функции:
y = -4x + 1.
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Таблица:
х -1 0 1
у 5 1 -3
№3. Построить график функции:
y = x² – 5.
График парабола, ветви направлены вверх.
Координаты вершины (0; -5)
Таблица:
х -4 -3 -2 0 2 3 4
у 11 4 -1 -5 -1 4 11
№4. Построить график функции:
y =10/х.
График гипербола.
Таблица:
х -10 -5 -4 -2 -1 0 1 2 4 5 10
у -1 -2 -2,5 -5 -10 - 10 5 2,5 2 1
№5. Построить график функции:
y = Ix + 1 I +3.
График функции с модулем, имеет вид "галочки".
Координаты вершины данного графика (-1; 3)
Таблица:
х -6 -4 -2 -1 0 2 4
у 8 6 4 3 4 6 8