56 мин=56\60 часа.
Пусть первый велосипедист был в пути t часов до встречи.
Второй ехал t и ещё 56/60 часа, когда первый стоял.
Формула пути S=vt (v -скорость, t-время)
До встречи первый проехал S₁= 20•t км, второй S₂=30•(t+56/60)
Расстояние между городами равно 93 км.
S₁+S₂=93 км
20t +30•(t+56/60)=93
20t+30t+30•56/60=93
50t=93-28
t=65:50
t=1,3 ( часа) - время, которое был в пути первый велосипедист.
За это время он проехал
20•1,3=26 (км)
Второй велосипедист проехал остальное расстояние между городами:
93-26=67 км - на таком расстоянии от второго города произошла встреча.
1)х∈(-2, 3)∪(4, +∞)
2)х∈(-4, 8)
3)х∈(-3, -2/3)∪(2/3, 3)
Объяснение:
1) (4-х)(х+2)(х-3) > 0;
х+2=0
х₁= -2
х-3=0
х₂=3
4-х=0
-х= -4
х₃=4
Отмечаем найденные точки на числовой оси и определяем знаки на каждом интервале.
Решения неравенства: х∈(-2, 3)∪(4, +∞), то есть, находятся на отрезке от -2 до 3 и на отрезке от 4 до + бесконечности.
2) (x²+4)(х-8)(4+х) < 0;
а)4+х=0
х₁= -4
б)х-8=0
х₂=8
в)х²+4=0
х²= -4, корней нет, НО:
так как а (коэффициент при х) =1, то есть, >0, то х²+4 > 0 при любых значениях х.
Решения неравенства: х∈(-4, 8), то есть, находятся на отрезке от -4 до 8.
3) (9x²-4)(9-x²)(7x²+2) > 0
а)9x²-4=0
9х²=4
х²=4/9
х₁,₂=±√4/9=±2/3
б)9-х²=0
-х²= -9
х²=9
х₁,₂=±√9=±3
в)7x²+2=0
7х²= -2
х²= -2/7 корней нет, НО:
так как а (коэффициент при х) =7, то есть, >0, то 7х²+2 > 0 при любых значениях х.
Расположим значения х по возрастающей, отметим найденные точки на числовой оси и определим знаки на каждом интервале:
х₁= -3 х₂= -2/3 х₃=2/3 х₄=3
Решения неравенства х∈(-3, -2/3)∪(2/3, 3), то есть, находятся на отрезке от -3 до -2/3 и на отрезке от 2/3 до 3,
56 мин=56\60 часа.
Пусть первый велосипедист был в пути t часов до встречи.
Второй ехал t и ещё 56/60 часа, когда первый стоял.
Формула пути S=vt (v -скорость, t-время)
До встречи первый проехал S₁= 20•t км, второй S₂=30•(t+56/60)
Расстояние между городами равно 93 км.
S₁+S₂=93 км
20t +30•(t+56/60)=93
20t+30t+30•56/60=93
50t=93-28
t=65:50
t=1,3 ( часа) - время, которое был в пути первый велосипедист.
За это время он проехал
20•1,3=26 (км)
Второй велосипедист проехал остальное расстояние между городами:
93-26=67 км - на таком расстоянии от второго города произошла встреча.
1)х∈(-2, 3)∪(4, +∞)
2)х∈(-4, 8)
3)х∈(-3, -2/3)∪(2/3, 3)
Объяснение:
1) (4-х)(х+2)(х-3) > 0;
х+2=0
х₁= -2
х-3=0
х₂=3
4-х=0
-х= -4
х₃=4
Отмечаем найденные точки на числовой оси и определяем знаки на каждом интервале.
Решения неравенства: х∈(-2, 3)∪(4, +∞), то есть, находятся на отрезке от -2 до 3 и на отрезке от 4 до + бесконечности.
2) (x²+4)(х-8)(4+х) < 0;
а)4+х=0
х₁= -4
б)х-8=0
х₂=8
в)х²+4=0
х²= -4, корней нет, НО:
так как а (коэффициент при х) =1, то есть, >0, то х²+4 > 0 при любых значениях х.
Отмечаем найденные точки на числовой оси и определяем знаки на каждом интервале.
Решения неравенства: х∈(-4, 8), то есть, находятся на отрезке от -4 до 8.
3) (9x²-4)(9-x²)(7x²+2) > 0
а)9x²-4=0
9х²=4
х²=4/9
х₁,₂=±√4/9=±2/3
б)9-х²=0
-х²= -9
х²=9
х₁,₂=±√9=±3
в)7x²+2=0
7х²= -2
х²= -2/7 корней нет, НО:
так как а (коэффициент при х) =7, то есть, >0, то 7х²+2 > 0 при любых значениях х.
Расположим значения х по возрастающей, отметим найденные точки на числовой оси и определим знаки на каждом интервале:
х₁= -3 х₂= -2/3 х₃=2/3 х₄=3
Решения неравенства х∈(-3, -2/3)∪(2/3, 3), то есть, находятся на отрезке от -3 до -2/3 и на отрезке от 2/3 до 3,