Чтобы число делилось на 6 нужно, чтобы оно делилось на 2 и на 3. Ежели число оканчивается на 6, то оно делится на 2. Число делится на 3 если сумма его цифр делится на 3. Пусть наше трехзначное число (трехзначное число, первая цифра - a, вторая - b, третья - 6). Тогда:
Сумма двух первых цифр числа должна делится на 3. Первая цифра числа может давать остатки при делении на 3:
0 (цифры 3, 6, 9), тогда и вторая цифра должна давать остаток 0 при делении на 3 (цифры 0, 3, 6, 9). Всего 3*4=12 вариантов.
1 (цифры 1, 4, 7), тогда вторая цифра должна давать остаток 2 при делении на 3 (цифры 2, 5, 8). Всего 3*3=9 вариантов.
2 (цифры 2, 5, 8), тогда вторая цифра должна давать остаток 1 при делении на 3 (цифры 1, 4, 7). Всего 3*3=9 вариантов.
Суммируем: 12+9+9=30. (вообще говоря, при делении на 3 возможны 3 различных остатка: 0, 1, 2, поэтому мы перебрали все возможные варианты)
ответ: 30
И для полной картины сами числа: 126, 156, 186, 216, 246, 276, 306, 336, 366, 396, 426, 456, 486, 516, 546, 576, 606, 636, 666, 696, 726, 756, 786, 816, 846, 876, 906, 936, 966, 996
Пусть ABCD - данный параллелограмм, а A', B', C', D' - точки, в которые переходят A, B, C, D. Т.к. при параллельном переносе плоскость переходит в параллельную ей плоскость (или в себя), то плоскость α'В'С'D' параллельна плоскости αВCD.
Т. к. при параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние, то AA' || BB' || CC' || DD' и AA' = BB' = CC' = DD'.
Так что в четырехугольнике AA'D'D противолежащие стороны параллельны и равны, а, значит, AA'D'D — параллелограмм. Тогда A'D' = AD и A'D' || AD.
Аналогично A'B' = AB и A'B' || AB; C'D' = CD и C'D' || CD; B'C' = BC и B'C' || BC.
Т. к. две прямые, параллельные третьей, параллельны, то получаем, что A'D' || B'C', A'B' || C'D'.
А, значит, A'B'C'D' — параллелограмм, равный параллелограмму ABCD (т.к. соответствующие стороны равны). Что и требовалось доказать.
Ежели число оканчивается на 6, то оно делится на 2.
Число делится на 3 если сумма его цифр делится на 3.
Пусть наше трехзначное число (трехзначное число, первая цифра - a, вторая - b, третья - 6). Тогда:
Сумма двух первых цифр числа должна делится на 3.
Первая цифра числа может давать остатки при делении на 3:
0 (цифры 3, 6, 9), тогда и вторая цифра должна давать остаток 0 при делении на 3 (цифры 0, 3, 6, 9). Всего 3*4=12 вариантов.
1 (цифры 1, 4, 7), тогда вторая цифра должна давать остаток 2 при делении на 3 (цифры 2, 5, 8). Всего 3*3=9 вариантов.
2 (цифры 2, 5, 8), тогда вторая цифра должна давать остаток 1 при делении на 3 (цифры 1, 4, 7). Всего 3*3=9 вариантов.
Суммируем: 12+9+9=30. (вообще говоря, при делении на 3 возможны 3 различных остатка: 0, 1, 2, поэтому мы перебрали все возможные варианты)
ответ: 30
И для полной картины сами числа:
126, 156, 186, 216, 246, 276, 306, 336, 366, 396, 426, 456, 486, 516, 546, 576, 606, 636, 666, 696, 726, 756, 786, 816, 846, 876, 906, 936, 966, 996
Т. к. при параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние, то AA' || BB' || CC' || DD' и AA' = BB' = CC' = DD'.
Так что в четырехугольнике AA'D'D противолежащие стороны параллельны и равны, а, значит, AA'D'D — параллелограмм. Тогда A'D' = AD и A'D' || AD.
Аналогично A'B' = AB и A'B' || AB; C'D' = CD и C'D' || CD; B'C' = BC и B'C' || BC.
Т. к. две прямые, параллельные третьей, параллельны, то получаем, что A'D' || B'C', A'B' || C'D'.
А, значит, A'B'C'D' — параллелограмм, равный параллелограмму ABCD (т.к. соответствующие стороны равны). Что и требовалось доказать.