В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
НикаN5
НикаN5
07.09.2020 21:15 •  Алгебра

Найти производную функции y=exp^(sin(2x)^2) и вычислить y=(pi/8)

Показать ответ
Ответ:
HolyKaktys
HolyKaktys
26.05.2020 02:17

y=e^{sin^2 (2x)}; y'=(e^{sin^2 (2x)})'=e^{sin^2 (2x)}*(sin^2 (2x))'=\\ e^{sin^2 (2x)}*2sin (2x) (sin (2x))'=\\ e^{sin^2 (2x)}*2sin (2x) cos (2x) (2x)'=\\ e^{sin^2 (2x)}*sin (2*2x) 2=\\ 2e^{sin^2 (2x)}*sin (4x)

 

y'(\frac{\pi}{8})=2e^{sin^2 (2\frac{\pi}{8})}*sin (4\frac{\pi}{8})=\\ 2*e^{sin^2 (\frac{\pi}{4})}*sin \frac{\pi}{2}=\\ 2*e^{(\frac{\sqrt{2}}{2})^2}*1 = 2e^{\frac{1}{2}}=2\sqrt{e}

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота