У = х³ - 3х + 1 производная y' = 3х² - 3 приравниваем y' = 0 и на ходим точки экстремумов 3(х² - 1) = 0 3(х + 1)(х - 1) = 0 Точки экстремумов х1 = -1; х2 = 1; График функции y' = 3х² - 3 - парабола веточками вверх пересекает ось х в точке х = -1, меняя знак с + на -. То есть в этой точке максимум. В точке х = 1, наоборот, знак производной меняется с - на +, поэтому это точка минимума. Найдём минимальное и максимальное значение функции 1) точка максимума при х = -1 у max = -1 + 3 + 1 = 3 2) точка минимума при х = 1 у min = 1 - 3 + 1 = -1
У Вас была сумма x₁² + x₂² , если бы Вы написали, что это равно (x₁ + x₂)²,то получилось бы, что в этот квадрат суммы входит 2x₁x₂ , так как (x₁ + x₂)² = x₁² + 2x₁x₂ + x₂² .Для того, чтобы x₁² + x₂² равнялось бы (x₁ + x₂)² нужно из квадрата суммы вычесть 2x₁x₂ .
Попробую по другому объяснить.
Была сумма x₁² + x₂² . Мы не можем написать, что :
x₁² + x₂² = (x₁ + x₂)² потому что (x₁ + x₂)² = x₁² + 2x₁x₂ + x₂², то есть справа лишнее слагаемое 2x₁x₂ . Поэтому написав
x₁² + x₂² = (x₁ + x₂)² нужно из правой части вычесть это лишнее слагаемое, только тогда левая часть будет равна правой и получим :
производная
y' = 3х² - 3
приравниваем y' = 0
и на ходим точки экстремумов
3(х² - 1) = 0
3(х + 1)(х - 1) = 0
Точки экстремумов х1 = -1; х2 = 1;
График функции y' = 3х² - 3 - парабола веточками вверх пересекает ось х в точке х = -1, меняя знак с + на -. То есть в этой точке максимум.
В точке х = 1, наоборот, знак производной меняется с - на +, поэтому это точка минимума.
Найдём минимальное и максимальное значение функции
1) точка максимума при х = -1 у max = -1 + 3 + 1 = 3
2) точка минимума при х = 1 у min = 1 - 3 + 1 = -1
У Вас была сумма x₁² + x₂² , если бы Вы написали, что это равно (x₁ + x₂)²,то получилось бы, что в этот квадрат суммы входит 2x₁x₂ , так как (x₁ + x₂)² = x₁² + 2x₁x₂ + x₂² .Для того, чтобы x₁² + x₂² равнялось бы (x₁ + x₂)² нужно из квадрата суммы вычесть 2x₁x₂ .
Попробую по другому объяснить.
Была сумма x₁² + x₂² . Мы не можем написать, что :
x₁² + x₂² = (x₁ + x₂)² потому что (x₁ + x₂)² = x₁² + 2x₁x₂ + x₂², то есть справа лишнее слагаемое 2x₁x₂ . Поэтому написав
x₁² + x₂² = (x₁ + x₂)² нужно из правой части вычесть это лишнее слагаемое, только тогда левая часть будет равна правой и получим :
x₁² + x₂² = (x₁ + x₂)² - 2x₁x₂