В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
281120057
281120057
13.12.2022 23:16 •  Алгебра

Найти производную

 xarcsin\sqrt{ \frac{x}{x + 1} } - \sqrt{x} + arctg \sqrt{x}

Показать ответ
Ответ:
Darklife1
Darklife1
11.09.2020 16:09

y=x\cdot arcsin\sqrt{\frac{x}{x+1}}-\sqrt{x}+arctg\sqrt{x}\\\\y'=arcsin\sqrt{\frac{x}{x+1}}+x\cdot \frac{1}{\sqrt{1-\frac{x}{x+1}}}\cdot \frac{1}{2}\cdot \sqrt{\frac{x+1}{x}}\cdot \frac{x+1-x}{(x+1)^2}-\frac{1}{2\sqrt{x}}+\frac{1}{1+x}\cdot \frac{1}{2\sqrt{x}}=\\\\=arcsin\sqrt{\frac{x}{x+1}}+\frac{x\sqrt{x+1}}{2(x+1)^2}\cdot \sqrt{\frac{x+1}{x}}-\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x}\cdot (1+x)}=\\\\=arcsin\sqrt{\frac{x}{x+1}}+\frac{\sqrt{x}}{2(x+1)}-\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x}\cdot (1+x)}

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота