В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
ssbina
ssbina
26.04.2023 13:05 •  Алгебра

Найти производную указанного порядка при формулы
лейбница. решить .

Показать ответ
Ответ:
ПоНчИкНям
ПоНчИкНям
21.12.2021 13:19

Объяснение:

Чтобы выяснить проходит ли данная функция через эти точки надо :

1) либо построить график функции на координатной плоскости, потом отметить эти точки и посмотреть, лежать ли они на этом графике.

: более легкий: просто подставить координаты точек В и С в уравнение графика функции y=-1/5x

У точки В координаты (-15;3), значит х=-15, у=3

Подставляем в уравнение у=-1/5х

3 = - \frac{1}{5} \times ( - 15)

Если справа перемножить, то будет 3, ответы совпадают 3=3

Значит график функции проходит через точку В.

Аналогичным образом поступим с точкой С:

С(1;-5). Х=1, у=-5

Подставляем и проверяем :

-5=-1/5*1

-5=-1/5 неверно

Значит данный график функции не проходит через точку С

0,0(0 оценок)
Ответ:
evgeniykorotkov
evgeniykorotkov
21.12.2021 13:19

(12;\;4),\;(34;\;-30),\;(103-19\sqrt{17};\;25\sqrt{17}-77)

Объяснение:

\sqrt{x+y}+\sqrt[3]{x-y}=6\\\sqrt[6]{(x+y)^3(x-y)^2}=8

Выполним преобразование:

\sqrt{x+y}+\sqrt[3]{x-y}=6\\\sqrt{x+y}\times\sqrt[3]{x-y}=8  или  \sqrt{x+y}+\sqrt[3]{x-y}=6\\\sqrt{x+y}\times\sqrt[3]{x-y}=-8

Пусть \sqrt{x+y}=k,\;\sqrt[3]{x-y}=t.

Тогда для 1-ого случая:

k+t=6\\kt=8

Заметим здесь теорему Виета (если не заметили, то можно просто решить эту систему).

Тогда:

k=4\\t=2

или

k=2\\t=4

Замечу, что замену можно было не делать. Она дана для понимания. Можно было сразу написать то, что идет после слов обратная замена.

Обратная замена:

1)\\\sqrt{x+y}=4\\\sqrt[3]{x-y}=2

Первое уравнение можно возвести в квадрат, так как обе части его положительны:

x+y=16\\x-y=8

Очевиден прием решения: сложение.

2x=24\\x=12\\\\y=16-x\\y=4

Получили пару чисел (12; 4).

2)\\\sqrt{x+y}=2\\\sqrt[3]{x-y}=4\\\\x+y=4\\x-y=64\\\\2x=68\\x=34\\\\y=4-x\\y=-30

Получили пару (34; -30).

Для 2-ого случая:

\sqrt{x+y}+\sqrt[3]{x-y}=6\\\sqrt{x+y}\times\sqrt[3]{x-y}=-8\\\\\sqrt{x+y}=3+\sqrt{17}\\\sqrt[3]{x-y}=3-\sqrt{17}\\\\x+y=(3+\sqrt{17})^2\\x-y=(3-\sqrt{17})^3\\\\x=103-19\sqrt{17}\\y=25\sqrt{17}-77

Еще одна пара чисел: (103-19\sqrt{17};\;25\sqrt{17}-77)

Заметим, что \sqrt{x+y}\ne3-\sqrt{17}, т.к. это число меньше 0.

Система уравнений решена!

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота