В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
shingekinokoyji
shingekinokoyji
19.03.2020 10:00 •  Алгебра

Найти производную y = (√a - √x)²

Показать ответ
Ответ:
vfeukb59Pavek
vfeukb59Pavek
06.02.2021 21:48

y=\left(\sqrt{a} - \sqrt{x}\right)^2

y'=2\left(\sqrt{a} - \sqrt{x}\right)\cdot\left(\sqrt{a} - \sqrt{x}\right)'=2\left(\sqrt{a} - \sqrt{x}\right)\cdot\left(\0 - \dfrac{1}{2\sqrt{x} } \right)=

=- \dfrac{1}{\sqrt{x} }\left(\sqrt{a} - \sqrt{x}\right)= \dfrac{1}{\sqrt{x} }\left(\sqrt{x} - \sqrt{a}\right)=\boxed{1-\sqrt{\dfrac{a}x}}}

0,0(0 оценок)
Ответ:
Niki1917
Niki1917
06.02.2021 21:48

y=(\sqrt{a}-\sqrt{x})^2\ \ ,\ \ \ a=const\ \ ,\\\\\star \ \ (u^2)'=2u\cdot u'\ \ ,\ \ u=\sqrt{a}-\sqrt{x}\ \ \star \\\\y'=2(\sqrt{a}-\sqrt{x})\cdot (\sqrt{a}-\sqrt{x})'=2(\sqrt{a}-\sqrt{x})\cdot \dfrac{-1}{2\sqrt{x}}=\dfrac{\sqrt{x}-\sqrt{a}}{\sqrt{x}}=1-\dfrac{\sqrt{a}}{\sqrt{x}}\\\\y'=1-\sqrt{\dfrac{a}{x}}

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота