В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
игорь778
игорь778
16.10.2021 06:05 •  Алгебра

Найти производную y=tg(sin3x)

Показать ответ
Ответ:
samnsk100617
samnsk100617
15.10.2020 13:15

Y = tg(sin 3x);

y '(x) = 1 /cos^2(sin 3x) * (sin 3x) ' = 3*cos 3x / cos^2(sin 3x)

Объяснение:

0,0(0 оценок)
Ответ:
альбина262
альбина262
15.10.2020 13:15

ответ:искомая производная выглядит следующим образом: y' = 3/cos(3x).

Объяснение:

Воспользуемся формулой для производной сложной функции: (g)h))' = (g(h)' * (h(x)'. Получим:

y' = (tg(sin(3x))' = 1/cos^2(3x) * (sin(3x))'.

Вновь применим вышеуказанную формулу:

y' = 1/cos^2(3x) * cos(3x) * (3x)' = 3/cos(3x).

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота