Нарисуем параболу у=х²+2, ветви вверх, вершина в точке (0,2) . Надо заштриховать область, расположенную ниже этой параболы.
Нарисуем прямую у=7, она проходит параллельно оси ОХ через точку (0,7) . Надо заштриховать область, расположенную ниже этой прямой. Так как неравенство у<7 строгое, то линия у=7 не входит в область, её рисуем штриховой линией.
Тогда область, соответствующая системе неравенств, будет та, которая получается в результате наложения штриховок. Верхняя граница этой области обведена зелёной линией.
Пусть x км/ч — скорость второго автомобиля, тогда (x + 10) км/ч — скорость первого автомобиля. Они встретились через 3 часа. За это время второй автомобиль проехал 3x км, а первый автомобиль — 3(x + 10) км. Используя эти данные и условия задачи, составим уравнение и решим его:
3(x + 10) + 3x = 450,
3x + 30 + 3x = 450,
6x = 450 - 30,
6x = 420,
x = 420 / 6,
x = 70 км/ч.
Мы нашли скорость второго автомобиля. Теперь найдем скорость второго автомобиля:
70 + 10 = 80 км/ч.
ответ: скорость первого автомобиля равна 80 км/ч, скорость второго автомобиля — 70 км/ч.
Нарисуем параболу у=х²+2, ветви вверх, вершина в точке (0,2) . Надо заштриховать область, расположенную ниже этой параболы.
Нарисуем прямую у=7, она проходит параллельно оси ОХ через точку (0,7) . Надо заштриховать область, расположенную ниже этой прямой. Так как неравенство у<7 строгое, то линия у=7 не входит в область, её рисуем штриховой линией.
Тогда область, соответствующая системе неравенств, будет та, которая получается в результате наложения штриховок. Верхняя граница этой области обведена зелёной линией.
Пусть x км/ч — скорость второго автомобиля, тогда (x + 10) км/ч — скорость первого автомобиля. Они встретились через 3 часа. За это время второй автомобиль проехал 3x км, а первый автомобиль — 3(x + 10) км. Используя эти данные и условия задачи, составим уравнение и решим его:
3(x + 10) + 3x = 450,
3x + 30 + 3x = 450,
6x = 450 - 30,
6x = 420,
x = 420 / 6,
x = 70 км/ч.
Мы нашли скорость второго автомобиля. Теперь найдем скорость второго автомобиля:
70 + 10 = 80 км/ч.
ответ: скорость первого автомобиля равна 80 км/ч, скорость второго автомобиля — 70 км/ч.
Объяснение: