Сначала нужно перевести 1 целую 4/7 в неправильную дробь. Для этого коэффициент целой части умножаешь на знаменатель и к получившемуся результату добавляешь числитель, т.е.(в твоем случае) : 1х7+4=11 (числитель не меняется - 7). Теперь можно приступать к самому делению, НО есть один момент, о котором не стоит забывать - при делении одной дроби на другую, первая дробь (7/5) остается неизменной, а вот вторая (уже 11/7) как бы переворачивается и становится 7/11. Вместе с дробью автоматически меняется и действие - деление заменяется умножением, и теперь ты получаешь такой пример : 7/5 x 7/11. Дальше числители под одну черту, как и знаменатели, и выполняешь обычное умножение дробей. Если я не ошиблась - получается дробь 49/55. Если в ответе дробь можно сократить - сокращай:)
1х7+4=11 (числитель не меняется - 7). Теперь можно приступать к самому делению, НО есть один момент, о котором не стоит забывать - при делении одной дроби на другую, первая дробь (7/5) остается неизменной, а вот вторая (уже 11/7) как бы переворачивается и становится 7/11. Вместе с дробью автоматически меняется и действие - деление заменяется умножением, и теперь ты получаешь такой пример :
7/5 x 7/11. Дальше числители под одну черту, как и знаменатели, и выполняешь обычное умножение дробей. Если я не ошиблась - получается дробь 49/55. Если в ответе дробь можно сократить - сокращай:)
Уравнение x^3 + x^2 + x + 2 = 0 имеет один иррациональный корень.
f(-2) = -8 + 4 - 2 + 2 = -4 < 0
f(-1) = -1 + 1 - 1 + 2 = 1 > 0
x0 ∈ (-2; -1)
Можно найти примерно
f(-1,4) = -2,744 + 1,96 - 1,4 + 2 = -0,184 < 0
f(-1,3) = -2,197 + 1,69 - 1,3 + 2 = 0,193 > 0
x0 ∈ (-1,4; -1,3)
Можно уточнить
f(-1,35) = 0,012125 > 0
f(-1,36) = -0,025856 < 0
x0 ∈ (-1,36; -1,35)
f(-1,353) ~ 0,0008
Точность достаточна.
Остальные два корня - комплексные.
Я думаю, что это ошибка в задаче, должно было быть
x^3 + x^2 + x + 1 = (x + 1)(x^2 + 1)
б) 4x - 4y + xy - y^2 = 4(x - y) + y(x - y) = (4 + y)(x - y)