35 км/ч
Объяснение:
Дано:
S₁ = 35 км
S₂ = 34 км
t = 2 ч
Vр = 1 км/ч
V - ?
1)
Заметим, что собственная скорость лодки равна скорости ее движения по озеру:
V₁ = V
Время, затраченное на движение по озеру:
t₁ = S₁ / V₁
или
t₁ = S₁ / V.
2)
Время, затраченное на движение по реке.
Заметим, что река впадает в озеро, а это значит, что лодка двигалась против течения: V₂ = V - Vp
t₂ = S₂ / V₂ или
t₂ = S₂ / (V - Vp)
3)
Общее время движения:
t = t₁ + t₂
t = S₁ / V₁ + S₂ / (V - Vp)
Подставляем данные и решаем уравнение:
2 = 35 / V + 34 / (V - 1)
2·V·(V-1) = 35·(V-1) + 34·V
2·V² - 2·V = 35·V - 35 +34·V
2·V² - 71·V + 35 = 0
Решая это квадратное уравнение, получаем:
V = (71-69)/4 = 0,5 км/ч (слишком маленькая скорость...)
V = (71+69)/4 = 35 км/ч
Найдем производную функции (17/3)*(-2х⁻³)+(150/17)*х
найдем критические точки (17/3)*(-2х⁻³)+(150/17)*х=0
(17/3)*(-2х⁻³)+(150/17)*х=0
-17/(3х³)+(75х/17)/х=0; (-17*17+75*3х⁴)/х³=0; (-17*17+75*3х⁴)/х³=0;
х⁴=17²/15²⇒х²=17/15; х=±√(17/15)
-√(17/15)___0√(17/15)
- + - +
Т.к. у нас получилось две точки минимума, и в них значение функции одинаково. то наименьшее значение равно f(-√(17/15))= (17/(3*17/15)+ (75(17/15))/17=5+5=10; f(√(17/15))= (17/(3*17/15)+ (75(17/15))/17=5+5=10
ответ 10
35 км/ч
Объяснение:
Дано:
S₁ = 35 км
S₂ = 34 км
t = 2 ч
Vр = 1 км/ч
V - ?
1)
Заметим, что собственная скорость лодки равна скорости ее движения по озеру:
V₁ = V
Время, затраченное на движение по озеру:
t₁ = S₁ / V₁
или
t₁ = S₁ / V.
2)
Время, затраченное на движение по реке.
Заметим, что река впадает в озеро, а это значит, что лодка двигалась против течения: V₂ = V - Vp
t₂ = S₂ / V₂ или
t₂ = S₂ / (V - Vp)
3)
Общее время движения:
t = t₁ + t₂
или
t = S₁ / V₁ + S₂ / (V - Vp)
Подставляем данные и решаем уравнение:
2 = 35 / V + 34 / (V - 1)
2·V·(V-1) = 35·(V-1) + 34·V
2·V² - 2·V = 35·V - 35 +34·V
2·V² - 71·V + 35 = 0
Решая это квадратное уравнение, получаем:
V = (71-69)/4 = 0,5 км/ч (слишком маленькая скорость...)
V = (71+69)/4 = 35 км/ч
Найдем производную функции (17/3)*(-2х⁻³)+(150/17)*х
найдем критические точки (17/3)*(-2х⁻³)+(150/17)*х=0
(17/3)*(-2х⁻³)+(150/17)*х=0
-17/(3х³)+(75х/17)/х=0; (-17*17+75*3х⁴)/х³=0; (-17*17+75*3х⁴)/х³=0;
х⁴=17²/15²⇒х²=17/15; х=±√(17/15)
-√(17/15)___0√(17/15)
- + - +
Т.к. у нас получилось две точки минимума, и в них значение функции одинаково. то наименьшее значение равно f(-√(17/15))= (17/(3*17/15)+ (75(17/15))/17=5+5=10; f(√(17/15))= (17/(3*17/15)+ (75(17/15))/17=5+5=10
ответ 10