1.√(7-3x)>5 ОДЗ: 7-3х≥0 Возводим обе части неравенства в квадрат: 7-3х> 25; Система: 7-3х≥0; 7-3х >25 равносильна неравенству 7-3х>25; -3x> 25-7; -3x > 18; x< -6. ответ. (-∞;-6). 2. √(2x+1)>-3 неравенство верно при любом х из ОДЗ. ОДЗ: 2х+1 ≥ 0 х ≥ -0,5 О т в е т. [-0,5;+∞) 3. √(3+2x)>=√(x+1) ОДЗ: 3+2х≥0 ⇒ x ≥ -1,5 х+1≥0 ⇒ x ≥-1 ОДЗ: х≥-1 Возводим неравенство в квадрат. 3+2х ≥ х+1; х ≥ -2 ответ с учетом ОДЗ х≥ -1 О т в е т. [-1;+∞)
4. √(8-2x)=<√(6x+15) ОДЗ: 8-2х ≥0 ⇒ х ≤ 4 6х+15≥0 ⇒ х≥-2,5 ОДЗ: - 2,5 ≤ х ≤ 4. Возводим неравенство в квадрат: 8 - 2х ≤ 6х + 15; -2х - 6х ≤ 15 - 8 - 8х ≤ 7 х ≥ -7/8 С учетом ОДЗ: О т в е т. [-7/8;4]
ОДЗ: 7-3х≥0
Возводим обе части неравенства в квадрат:
7-3х> 25;
Система:
7-3х≥0;
7-3х >25
равносильна неравенству
7-3х>25;
-3x> 25-7;
-3x > 18;
x< -6.
ответ. (-∞;-6).
2. √(2x+1)>-3
неравенство верно при любом х из ОДЗ.
ОДЗ: 2х+1 ≥ 0
х ≥ -0,5
О т в е т. [-0,5;+∞)
3. √(3+2x)>=√(x+1)
ОДЗ:
3+2х≥0 ⇒ x ≥ -1,5
х+1≥0 ⇒ x ≥-1
ОДЗ: х≥-1
Возводим неравенство в квадрат.
3+2х ≥ х+1;
х ≥ -2
ответ с учетом ОДЗ
х≥ -1
О т в е т. [-1;+∞)
4. √(8-2x)=<√(6x+15)
ОДЗ:
8-2х ≥0 ⇒ х ≤ 4
6х+15≥0 ⇒ х≥-2,5
ОДЗ: - 2,5 ≤ х ≤ 4.
Возводим неравенство в квадрат:
8 - 2х ≤ 6х + 15;
-2х - 6х ≤ 15 - 8
- 8х ≤ 7
х ≥ -7/8
С учетом ОДЗ:
О т в е т. [-7/8;4]
Объяснение:
Ну и что тут сложного?
Функция y=4-3x - это прямая линия! Немного запись не привычная? Давай перепишем:
y=-3x+4
А как строят график прямой? Да как обычно - по двум точкам (из геометрии вспомним "через любые две точки можно провести прямую, причем только одну").
1. Объявляем x=0, и находим у.
y=-3*0+4; y=4
Первая точка у нас есть. Ее координаты: т.А (0;4)
2. Объявляет y=0, и находим х.
0=-3x+4; -3x=0-4; -x=-4/3; x=4/3;
Вот и вторая точка, ее координаты: т.В(4/3;0)
Имеем две точки прямой: т.А(0;4) и т.В(4/3;0)
Находим эти точки на координатной плоскости ХОY, и линеечкой проводим между этими точками прямую.
Все!