Преобразуем выражение x³-3x²-x+3=0 х²(х-3)-1*(х-3)=0 Вынесем общий множитель х-3, получим (х-3)(х²-1)=0 т. к. а²-в²=(а-в) (а+в) , получим (х-3)(х-1)(х+1)=0 Произведение равно нулю, если один из множителей равен нулю, т. е. х-3=0 или х-1=0 или х+1=0, отсюда х=3 или х=1 или х=-1 ответ уравнение имеет три корня 3; 1; -1 решите неравенство -2x²-5x больше либо равно -3 -2x²-5x ≥-3 или -2x²-5x +3≥0 Решим уравнение -2x²-5x +3=0 Дискриминант квадратного уравнения ах²+вх+с=0, определяется по формуле Д=в²-4ас=(-5)²-4*(-2)*3=25+24=49 Корни квадратного уравнения определим по формуле х1=-в+√Д/2а=5+√49/2*(-2)=5+7/(-4)= 12/(-4)=-3 х2=-в-√Д/2а=5-√49/2*(-2)=5-7/(-4)= -2/(-4)=½ т. е. -2x²-5x +3=(-2)(х-½)(х+3)=(1-2х) (х+3) Отметим на числовой оси все корни уравнения и определим знак каждого промежутка -___-3+½-х у (-4)= (1-2(-4))(-4+3)=(1+8)(-1)=-9<0( знак минус на числовой оси) у (0)= (1-2*0)(0+3)=1*3=3>0( знак плюс на числовой оси) у (1)= (1-2*1)(1+3)=(-1)*4=-4<0( знак минус на числовой оси) Неравенство -2x²-5x +3≥0имеет смысл, согласно числовой оси, если х принадлежит промежутку [-3;½]
ПУСТЬ х км/ч - скорость первого авто х+10 км/ч - скорость второго ИЗВЕСТНО 4 ч - время в пути до встречи 560 км - расстояние ПОЛУЧАЕМ
4*(х+х+10)=560 8х+40=560 8х=560-40 8х=520 х=520:8 х=65(км/ч) - скорость первого авто 65+10=75(км/ч) - скорость второго авто
или
ПУСТЬ скорость второго на 10 км/ч больше ИЗВЕСТНО время в пути - 4 ч расстояние 560 км
1) 10*4=40(км) - на столько больше проехал второй, т.к. его скорость больше на 10 км 2) 560-40=520(км) - проехали вместе с одинаковой скоростью 3) 520:4=130(км) - проехал каждый за 4 часа с одинаковой скоростью 4) 130:2=65(км/ч) - скорость первого авто 5) 65+10=75(км/ч) - скорость второго авто
x³-3x²-x+3=0
х²(х-3)-1*(х-3)=0
Вынесем общий множитель х-3, получим
(х-3)(х²-1)=0
т. к. а²-в²=(а-в) (а+в) , получим
(х-3)(х-1)(х+1)=0
Произведение равно нулю, если один из множителей равен нулю, т. е.
х-3=0 или х-1=0 или х+1=0, отсюда
х=3 или х=1 или х=-1
ответ уравнение имеет три корня 3; 1; -1
решите неравенство -2x²-5x больше либо равно -3
-2x²-5x ≥-3
или -2x²-5x +3≥0
Решим уравнение
-2x²-5x +3=0
Дискриминант квадратного уравнения ах²+вх+с=0, определяется по формуле
Д=в²-4ас=(-5)²-4*(-2)*3=25+24=49
Корни квадратного уравнения определим по формуле
х1=-в+√Д/2а=5+√49/2*(-2)=5+7/(-4)= 12/(-4)=-3
х2=-в-√Д/2а=5-√49/2*(-2)=5-7/(-4)= -2/(-4)=½
т. е. -2x²-5x +3=(-2)(х-½)(х+3)=(1-2х) (х+3)
Отметим на числовой оси все корни уравнения и определим знак каждого промежутка
-___-3+½-х
у (-4)= (1-2(-4))(-4+3)=(1+8)(-1)=-9<0( знак минус на числовой оси)
у (0)= (1-2*0)(0+3)=1*3=3>0( знак плюс на числовой оси)
у (1)= (1-2*1)(1+3)=(-1)*4=-4<0( знак минус на числовой оси)
Неравенство -2x²-5x +3≥0имеет смысл, согласно числовой оси, если х принадлежит промежутку [-3;½]
х км/ч - скорость первого авто
х+10 км/ч - скорость второго
ИЗВЕСТНО
4 ч - время в пути до встречи
560 км - расстояние
ПОЛУЧАЕМ
4*(х+х+10)=560
8х+40=560
8х=560-40
8х=520
х=520:8
х=65(км/ч) - скорость первого авто
65+10=75(км/ч) - скорость второго авто
или
ПУСТЬ
скорость второго на 10 км/ч больше
ИЗВЕСТНО
время в пути - 4 ч
расстояние 560 км
1) 10*4=40(км) - на столько больше проехал второй, т.к. его скорость больше на 10 км
2) 560-40=520(км) - проехали вместе с одинаковой скоростью
3) 520:4=130(км) - проехал каждый за 4 часа с одинаковой скоростью
4) 130:2=65(км/ч) - скорость первого авто
5) 65+10=75(км/ч) - скорость второго авто