Подставляем полученное выражение в нижнее уравнение вместо "у":
Раскрываем квадрат разности двух выражений, пользуясь следующей формулой:
Приведём подобные слагаемые. Для этого вынесем общий множитель за скобки:
Выполним сложение в скобке и перенесём слагаемое 13 со знаком минус в левую часть уравнения:
Выполним вычитание:
Разделив все части нижнего уравнения на 6, получим:
Теперь разделим все части нижнего уравнения на 2 для того, чтобы получить приведённое квадратное уравнение:
Решаем нижнее уравнение по теореме Виета. Согласно ей, сумма корней приведённого квадратного уравнения равна коэффициенту при "х", взятому с противоположным знаком, а их произведение — свободному члену:
Минус перед скобкой и минус после скобки дают плюс:
Корнями этой системы являются числа 1/2 и 2.
Мы нашли два значения переменной "х". Теперь подставим каждое из них в верхнее уравнение:
Общая формула прямой: y=kx+b, где k - угол наклона к оси Ох, а b - смещение по у.
Найдем сначала k: k = тангенсу угла, образованного прямой и осью Ох. Образуем прямоуг. треугольник (как угодно), чтобы найти тангенс. Самый простой - "верхняя часть" показанной функции. Тангенс = 4 (катет = 4 поделить на катет = 1)
Если без тангенса, то можно вычислить логически: за ∆х = 1, ∆у = 4, k - это "скорость" возрастания функции, следует k = 4.
b найти еще проще, смещение по у = -4, следует b = -4.
Иначе, чтобы найти b, нужно чтобы формула приняла вид y = b, такое возможно при х =0. Находим на графике координаты у при х = 0, у = -4, следует b = -4.
Объяснение:
Выражаем из верхнего уравнения переменную "у":
Подставляем полученное выражение в нижнее уравнение вместо "у":
Раскрываем квадрат разности двух выражений, пользуясь следующей формулой:
Приведём подобные слагаемые. Для этого вынесем общий множитель за скобки:
Выполним сложение в скобке и перенесём слагаемое 13 со знаком минус в левую часть уравнения:
Выполним вычитание:
Разделив все части нижнего уравнения на 6, получим:
Теперь разделим все части нижнего уравнения на 2 для того, чтобы получить приведённое квадратное уравнение:
Решаем нижнее уравнение по теореме Виета. Согласно ей, сумма корней приведённого квадратного уравнения равна коэффициенту при "х", взятому с противоположным знаком, а их произведение — свободному члену:
Минус перед скобкой и минус после скобки дают плюс:
Корнями этой системы являются числа 1/2 и 2.
Мы нашли два значения переменной "х". Теперь подставим каждое из них в верхнее уравнение:
Мы получили две пары корней:
Они являются решениями системы.
Общая формула прямой: y=kx+b, где k - угол наклона к оси Ох, а b - смещение по у.
Найдем сначала k: k = тангенсу угла, образованного прямой и осью Ох. Образуем прямоуг. треугольник (как угодно), чтобы найти тангенс. Самый простой - "верхняя часть" показанной функции. Тангенс = 4 (катет = 4 поделить на катет = 1)
Если без тангенса, то можно вычислить логически: за ∆х = 1, ∆у = 4, k - это "скорость" возрастания функции, следует k = 4.
b найти еще проще, смещение по у = -4, следует b = -4.
Иначе, чтобы найти b, нужно чтобы формула приняла вид y = b, такое возможно при х =0. Находим на графике координаты у при х = 0, у = -4, следует b = -4.
Подставляем в формулу:
y = 4x - 4