1. За 1 - принимается весь объем работы.
Пусть X - время, которое на перепечатку рукописи затрачивает первая машинистка.
Тогда 1/ X - ее производительность.
(X - 2) - время, которое на перепечатку рукописи затрачивает вторая машинистка.
И 1/(X - 2) - ее производительность.
2. Запишем выражение для производительности совместной работы.
2 часа 24 минуты = 2 часа + 24/60 часа = 2,4 часа.
1/ X + 1 / (X - 2) = 2,4.
Решаем уравнение приведением к общему знаменателю.
X - 2 + X = 2,4 * X * X - 4,8 * X.
2,4 * X * X - 6,8 * X + 2 = 0.
3. Решаем квадратное уравнение через дискриминант.
D = 6,8 * 6,8 - 2.4 * 2 * 4 = 46,24 - 19,2 = 27,04
X1 = (6,8 + 5,2) / 4,8 = 12 / 4,8 = 2,5 часа = 2 часа 30 минут- время первой машинистки.
2,5 - 2 = 0,5 = 30 минут - время второй машинистки.
X2 = (6,8 - 5,2) / 4,8 = 1,6 / 4,8 = 1/3 часа.
(1 / 3 - 2) - величина отрицательная, этого быть не может.
Значит в задаче только одно решение.
ответ: Для перепечатки рукописи первой машинистке нужно 2 часа 30 минут, а второй - 30 минут.
Объяснение:
а)
√(4-x) , √(2x-2) , 4 являются последовательными членами геометрической прогрессии
... a_(n) , a_(n+1) ,a_(n+2 ) ...
a_(n+1)² =a_(n)*a_(n+2) _характеристическое свойство геометрической прогрессии .
{ 4-x >0 ; 2x-2 >0 ; (√(2x-2) )² = 4*√(4-x) .⇔{ 1 < x < 4 ; 2x -2 = 4*√(4-x) . ⇔ { x∈ (1 ; 4) ; x -1 = 2*√(4-x) . ⇔ { x∈ (1 ; 4) ; (x -1)² = 4*(4-x) .
(x -1)² = 4*(4-x) ;
x² -2x +1 = 16 - 4x ;
x² +2x - 15 =0 ; * * * x = -1±√(1+15) * * *
x₁ = -1 - 4 = -5 ∉ (1,4) ;
x₂ = -1+4 = 3 . * * * √(4-x) =1 , √(2x-2) =2 , 4 * * *
ответ : 3
б)
...√(2x-2) , √(4-x) , 4 ...
(√(4-x) )² =4√(2x-2) ;
4 - x = 4√(2x-2) ;
16 -8x +x² =16(2x-2) ;
x² - 40x +48 =0 ;
x =20 ±√(20² -48) ;
x =20 ±4√22 ;
x₁ =20 + 4√22 ∉ (1,4) ;
x₂ = 20 - 4√22 ≈ 1,24 .
ответ : 4(5 -√22 ).
в)
...√(2x-2) , 4 , √(4-x)... * * * или ...√(4-x) , 4 , .√(2x-2) ...
4² = √(2x-2) *√(4-x) ⇔ 16 = -2x² +10x -8 ⇔ 2x² -10x +24 =0 ⇔ x² -5x +12 =0
D =5² -4*12 =25 -48 = -23 <0 _не имеет действительных корней.
1. За 1 - принимается весь объем работы.
Пусть X - время, которое на перепечатку рукописи затрачивает первая машинистка.
Тогда 1/ X - ее производительность.
(X - 2) - время, которое на перепечатку рукописи затрачивает вторая машинистка.
И 1/(X - 2) - ее производительность.
2. Запишем выражение для производительности совместной работы.
2 часа 24 минуты = 2 часа + 24/60 часа = 2,4 часа.
1/ X + 1 / (X - 2) = 2,4.
Решаем уравнение приведением к общему знаменателю.
X - 2 + X = 2,4 * X * X - 4,8 * X.
2,4 * X * X - 6,8 * X + 2 = 0.
3. Решаем квадратное уравнение через дискриминант.
D = 6,8 * 6,8 - 2.4 * 2 * 4 = 46,24 - 19,2 = 27,04
X1 = (6,8 + 5,2) / 4,8 = 12 / 4,8 = 2,5 часа = 2 часа 30 минут- время первой машинистки.
2,5 - 2 = 0,5 = 30 минут - время второй машинистки.
X2 = (6,8 - 5,2) / 4,8 = 1,6 / 4,8 = 1/3 часа.
(1 / 3 - 2) - величина отрицательная, этого быть не может.
Значит в задаче только одно решение.
ответ: Для перепечатки рукописи первой машинистке нужно 2 часа 30 минут, а второй - 30 минут.
Объяснение: