Два автомата изготовили 1000 деталей. В результате проверки оказалось,что первый автомат выдал 2% брака, а второй 5%брака. Количество небракованных деталей составило 974 штуки.Сколько деталей изготовил второй автомат?
Решение: Пусть второй автомат изготовил - х деталей, тогда первый автомат изготовил 1000-х деталей. Так как количество бракованных деталей первого автомата равно 2% то количество нормальных деталей от первого автомата равно 100-2=98% или 98*(1000-х)/100=0,98(1000-х)=980-0,98х.
Для второго автомата с количеством брака равным 5% количество нормальных деталей равно 100-5=95% или 95х/100=0,95х. Общее количество нормальных деталей равно 974, поэтому запишем уравнение: 0,95х + 980 - 0,98х = 974 -0,03х = 974 - 980 0,03х = 6 х = 200 Количество деталей выпущенных вторым автоматом равно 200 штук.
Пусть x - сумма всех учеников в первой группе до перехода, а y - количество учеников в этой группе. Тогда:
x/y = 22
Пусть k - сумма всех учеников во второй группе до перехода, а l - количество учеников в этой группе. Тогда:
k/l = 45
Известно, что при переходе ученика из второй группы в первую, средний у обоих групп повысился на 1, то есть:
(x+n)/(y+1)=23
(k-n)/(l-1)=46
Где n - количество ученика, который перешёл из второй группы в первую. Выразим n в обеих формулах:
n = 23(y+1)-x
n = -46(l-1)+k
Приравняем правые части этих уравнений:
23(y+1)-x = -46(l-1)+k
23y+23-x = k-46l+46
x и k мы можем выразить из двух первых формул, то есть:
x = 22y
k = 45l
Подставим правые части данных уравнений в уравнение выше:
23y+23-x = k-46l+46
23y+23-22y = 45l-46l+46
y+23 = 46-l
y+l = 46-23
y+l = 23
Поскольку y - количество учеников в первой группе, а l - количество учеников во второй группе, то y + l = 23 ученика в обеих группах.
23 ученика в обеих группах
Решение:
Пусть второй автомат изготовил - х деталей, тогда первый автомат изготовил 1000-х деталей.
Так как количество бракованных деталей первого автомата равно 2% то количество нормальных деталей от первого автомата равно
100-2=98%
или
98*(1000-х)/100=0,98(1000-х)=980-0,98х.
Для второго автомата с количеством брака равным 5% количество нормальных деталей равно
100-5=95%
или
95х/100=0,95х.
Общее количество нормальных деталей равно 974, поэтому запишем уравнение:
0,95х + 980 - 0,98х = 974
-0,03х = 974 - 980
0,03х = 6
х = 200
Количество деталей выпущенных вторым автоматом равно 200 штук.
ответ : 200 штук.