Объяснение:= b2 - 4ac = 92 - 4·2·10 = 81 - 80 = 1
x1 = -9 - √1 2·2 = -9 - 1 4 = -10 4 = -2.5
x2 = -9 + √1 2·2 = -9 + 1 4 = -8 4 = -2
D = b2 - 4ac = 172 - 4·1·0 = 289 - 0 = 289
x1 = -17 - √289 2·1 = -17 - 17 2 = -34 2 = -17
x2 = -17 + √289 2·1 = -17 + 17 2 = 0 2 = 0
D = b2 - 4ac = 82 - 4·5·(-4) = 64 + 80 = 144
x1 = -8 - √144 2·5 = -8 - 12 10 = -20 10 = -2
x2 = -8 + √144 2·5 = -8 + 12 10 = 4 10 = 0.4
D = b2 - 4ac = (-2)2 - 4·7·(-14) = 4 + 392 = 396
x1 = 2 - √396 2·7 = 1 7 - 3 7 √11 ≈ -1.2785534815808857
x2 = 2 + √396 2·7 = 1 7 + 3 7 √11 ≈ 1.5642677672951713
= b2 - 4ac = (-7)2 - 4·1·12 = 49 - 48 = 1
x1 = 7 - √1 2·1 = 7 - 1 2 = 6 2 = 3
x2 = 7 + √1 2·1 = 7 + 1 2 = 8 2 = 4
Объяснение:= b2 - 4ac = 92 - 4·2·10 = 81 - 80 = 1
x1 = -9 - √1 2·2 = -9 - 1 4 = -10 4 = -2.5
x2 = -9 + √1 2·2 = -9 + 1 4 = -8 4 = -2
D = b2 - 4ac = 172 - 4·1·0 = 289 - 0 = 289
x1 = -17 - √289 2·1 = -17 - 17 2 = -34 2 = -17
x2 = -17 + √289 2·1 = -17 + 17 2 = 0 2 = 0
D = b2 - 4ac = 82 - 4·5·(-4) = 64 + 80 = 144
x1 = -8 - √144 2·5 = -8 - 12 10 = -20 10 = -2
x2 = -8 + √144 2·5 = -8 + 12 10 = 4 10 = 0.4
D = b2 - 4ac = (-2)2 - 4·7·(-14) = 4 + 392 = 396
x1 = 2 - √396 2·7 = 1 7 - 3 7 √11 ≈ -1.2785534815808857
x2 = 2 + √396 2·7 = 1 7 + 3 7 √11 ≈ 1.5642677672951713
= b2 - 4ac = (-7)2 - 4·1·12 = 49 - 48 = 1
x1 = 7 - √1 2·1 = 7 - 1 2 = 6 2 = 3
x2 = 7 + √1 2·1 = 7 + 1 2 = 8 2 = 4
V t S
1 y 184/y
184
2 x 184/x
Зная, что первый, на прохождение всего пути затратил на 1/12 ч меньше,
составим уравнение по времени
184/у+1/12 = 184/х
Если первый гонщик обогнал второго на круг (4 км) через 1ч -> его скорость на 4 км/ч больше чем у второго
у-х=4
Составим систему уравнений
Выразим у из у-х=4
у=4+х
и подставим выражение в первое ур-е
2208x+4x+x²=8832+2208x
x²+4x-8832=0
D=16+4*8832=35344
x₁=(-4+188)/2= 92
x₂=(-4-188)/2= -96 скорость должна быть неотрицателным числом
ответ: средняя скорость второго гонщика 92 км/ч