В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Тявка1
Тявка1
01.11.2021 16:36 •  Алгебра

Найти тангенс угла, образованного осью абсцисс касательной к графику функции y = x2-5x + 4​

Показать ответ
Ответ:
аааааа102
аааааа102
18.06.2021 14:43
Решим не стандартным

1 ученик - А
2 ученик - Б

Получаем:
А            Б
4             5
5             4
5             5
4             4

В итоге,существует расставить 2 ученикам 2 оценки (4 и 5).

А если прибавить к ним еще одного ученика - С. То:

А          Б          С
4          4           4
5          5           5
4          4           5
4          5           5
5          5           4
5          4           4
4          5           4
5          4           5

В итоге получаем

А что если, оставим тех же 2 учеников, но добавим 1 оценку - 3?

А вот что получим:

А                      Б
3                      3
4                      4
5                      5
3                      4
4                      3
4                      5
5                      4
3                      5
5                      3

В итоге, мы получили

Нет смысла, добавлять 3 ученика. Уже  и так можно увидеть закономерность.

В 1 раз, мы имели 2 ученика и 2 оценки, отметим это как:
(2,2)
В 2 раз, мы имели 3 ученика и 2 оценки, отметим это как:
(2,3)
В 3 раз, мы имели 2 ученика и 3 оценки, отметим это как:
(3,2)

А теперь, выведем формулу:
(a,b)=a^b - где a-число оценок, b-число учеников.

В итоге и получаем:
1 случай:
(2,2)=2^2=4
2 случай:
(2,3)=2^3=8
3 случай:
(3,2)=3^2=9

Теперь, вычислим наш случай в задаче. Есть 24 ученика = b, и 4 оценки=a (2,3,4,5).
Отсюда:
(a,b)=(4,24)=4^{24}=281474976710656

Второй

Для первого ученика существует 4 варианта:
2,3,4,5 
Для второго ученика существует 4 варианта на каждый вариант первого ученика.
То есть:
\dispaystyle 4\cdot 4=16 - варианта событий.

Для третьего ученика существует 4 варианта на каждый вариант второго ученика.
То есть:
16\cdot 4=64 - варианта событий.

И так далее. В итоге получаем, что для 24 учеников существует ровно:

4^{24}=281474976710656 - вариантов событий.
0,0(0 оценок)
Ответ:
Богдана348
Богдана348
08.04.2021 20:17
(sina+cosa)^2 + (sina+ cosa^2 -2=2( sina+cosa)^2=
= 2(sin^2 a +2sinacosa + cos^2 a ) -2 = 2(1+2sinacosa)-2=2 + 4sinacosa -2=
= 4sinacosa
Если уже изучили формулы двойного аргумента, то в ответе поkучим 2sin2a  При решении воcпользовались формулой sin^2 a+cos^2 а =1
3) Упростить: sin^2 a +cos^2 a +ctg^2a= 1+ctg^2a=1/ sin^2 a.
4) ctga=cosa/sina. Sina нам известен, осталось найти сosa:
 =+- V(1-cos^2 a) =+- V( 1-sin^2a)=+-V(1-1/16)= +-V15/16  
( V- корень квадратный.  Т.к cosa  во второй четверти отрицателен,то из двух знаков +- оставим только минус.
 Итак cosa= - V15/4 (в этом выражении V относится только к числителю )
ctga=-V15/4:1/4  после сокращения на 4 получим ответ ctg= -V15 
2) Разделим почленно все слагаемые на sin^2acos^2b получим дробь
sin^2a+sin^2b-sin^2a*sin^2b+cos^2a*cos^2b
=
                  sin^2acos^2b
1/cos^2b+tg^2b-tg^2b+ctg^2a=1/cos^2b+ctg^2 a
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота