Одно число n, следующее за ним (n+1)
Разность квадратов двух последовательных натуральных чисел
(n+1)²-n²
(Из бо`льшего вычитаем меньшее, потому что по условию разности квадратов неотрицательны
Следующие два последовательных натуральных чисел это (n+2) и (n+3)
Разность квадратов следующих двух последовательных натуральных чисел
(n+3)²-(n+2)²
(Здесь тоже из бо`льшего вычитаем меньшее)
Сумма разностей квадратов по условию равна 50.
Уравнение
((n+1)²-n²) + ((n+3)²-(n+2)²)=50
(n²+2n+1-n²)+(n²+6n+9-n²-4n-4)=50
2n+1+2n+5=50
4n=44
n=11
11; 12; 13; 14
(14²-13²)+(12²-11²)=27+23
27+23=50 - верно
Подробнее - на -
Преобразуем выражения, воспользовавшись следующими свойствами степеней:
а^c * b^c = (ab)^c,
(a^b)^c = a^(bc),
a^b * a^c = a^(b + c).
x * x^3 * x * x^7 = x^(1 + 3 + 1 + 7) = x^12.
(-2a)^2 * (-2a) * (-2a)^5 = (-2a)^(2 + 1 + 5) = (-2a)^8 = (-1)^8 * 2^8 = 1 * 2^8 = 2^8.
c^m * c * c^2 * c^(m+1) * c = c^(m + 1 + 2 + m + 1 + 1) = c^(2m + 5).
5 * 125 * 25 = 5 * 5^3 * 5^2 = 5^(1 + 3 + 2) = 5^6.
8 * 32 * 16 = 2^3 * 2^5 * 2^4 = 2^(3 + 5 + 4) = 2^12.
3^n * 27 * 3^(n – 4) * 9 = 3^n * 3^3 * 3^(n – 4) * 3^2 = 3^(n + 3 + n – 4 + 2) = 3^(2n + 1).
Одно число n, следующее за ним (n+1)
Разность квадратов двух последовательных натуральных чисел
(n+1)²-n²
(Из бо`льшего вычитаем меньшее, потому что по условию разности квадратов неотрицательны
Следующие два последовательных натуральных чисел это (n+2) и (n+3)
Разность квадратов следующих двух последовательных натуральных чисел
(n+3)²-(n+2)²
(Здесь тоже из бо`льшего вычитаем меньшее)
Сумма разностей квадратов по условию равна 50.
Уравнение
((n+1)²-n²) + ((n+3)²-(n+2)²)=50
(n²+2n+1-n²)+(n²+6n+9-n²-4n-4)=50
2n+1+2n+5=50
4n=44
n=11
11; 12; 13; 14
(14²-13²)+(12²-11²)=27+23
27+23=50 - верно
Подробнее - на -
Преобразуем выражения, воспользовавшись следующими свойствами степеней:
а^c * b^c = (ab)^c,
(a^b)^c = a^(bc),
a^b * a^c = a^(b + c).
x * x^3 * x * x^7 = x^(1 + 3 + 1 + 7) = x^12.
(-2a)^2 * (-2a) * (-2a)^5 = (-2a)^(2 + 1 + 5) = (-2a)^8 = (-1)^8 * 2^8 = 1 * 2^8 = 2^8.
c^m * c * c^2 * c^(m+1) * c = c^(m + 1 + 2 + m + 1 + 1) = c^(2m + 5).
5 * 125 * 25 = 5 * 5^3 * 5^2 = 5^(1 + 3 + 2) = 5^6.
8 * 32 * 16 = 2^3 * 2^5 * 2^4 = 2^(3 + 5 + 4) = 2^12.
3^n * 27 * 3^(n – 4) * 9 = 3^n * 3^3 * 3^(n – 4) * 3^2 = 3^(n + 3 + n – 4 + 2) = 3^(2n + 1).