В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
2566409
2566409
11.09.2021 07:19 •  Алгебра

Найти точку минимума y=(18-x)e^18-x найти наименьшее значение функции на отрезке [-2.5; 0] y=4х -lп(х + 3)^4 наиб.значение функции на отрезке [-7.5; 0] y=ln(x+8)^3-3x наим.значение функции на отрезке [-2,5; 0] y=3x-3ln(x+3)+5

Показать ответ
Ответ:
Zer2806
Zer2806
28.06.2020 15:47
Берешь производную 
y'(x) = 3*x^2 + 36*x 

Приравниваешь ее к 0. 
3*x^2 + 36*x = 0 
3*x*(x + 12) = 0 
x1 = 0 
x2 = -12 (не подходит) . 

Вычисляешь значения функции при x = 0 и на концах отрезка: 
y(-3) = x^3 + 18*x^2 + 11 = 146 
y(0) = x^3 + 18*x^2 + 11 = 11 
y(3) = x^3 + 18*x^2 + 11 = 200 

Значит наименьшее значение на отрезке [-3; 3] равно 11. 
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота